Current Articles
Browse Archives
Contact Us
AUF Home
ISA Seal
Get Acrobat Reader

Arboriculture & Urban Forestry Online
Volume 45, Issue 6 — November 2019

Root Penetration of Polyvinyl Chloride (PVC) Stormwater and Sewer Pipes

Gregory M. Moore, Susan Bendel, and Peter B. May

Abstract: Two experiments investigated factors influencing root penetration of polyvinyl chloride (PVC) pipes. Eucalyptus leucoxylon, Allocasuarina littoralis, Lophostemon confertus, Callistemon salignus, Acer palmatum, and Pyrus calleryana seedlings were grown in containers containing 150-mm lengths of sealed 75-mm PVC stormwater pipe with cracks 0.04 mm, 0.66 mm, or 1.48 mm wide on their upper surface. The buried pipes contained water, water and stormwater, soil, or soil and stormwater. There were six replicates and 432 plants. There was no significant difference in the mass of roots entering the pipes for the two larger crack widths with 70% of pipes penetrated and strong growth inside the pipes. While the roots of all species penetrated cracks greater than 0.66 mm, only roots of C. salignus, E. leucoxylon, and L. confertus penetrated 0.04 mm cracks. Roots penetrated 50 to 60% of pipes containing soil, or soil and stormwater, and 40% of pipes containing water, or water and stormwater were penetrated. The plants with roots penetrating pipes containing water and stormwater grew tallest. No roots penetrated the welded caps of the stormwater pipes. A second experiment using E. leucoxylon, Melaleuca ericifolia, Ficus macrophylla, A. littoralis, and Salix fragilis investigated root penetration of different sized holes in polycarbonate plates. The plates, installed in containers with growing medium above and below, had either 2 4 mm holes, 8 2 mm holes, 127 0.5 mm holes, or a mixture of holes (1 4 mm, 2 2 mm and 32 0.5 mm holes), total pore area in all being 25.14 mm2. Below the plates, the growing medium was capillary irrigated with stormwater or water. All species grew through 0.5-mm holes and had strong root growth below the plates. When irrigated with stormwater, all species were taller and had greater biomass, and most species had a greater root mass below the plates. In general and regardless of hole size, the more holes in the plates, the more roots penetrated them. Properly installed PVC pipes are impenetrable, but the width and number of openings in a pipe influence the capacity for penetration and subsequent root growth so protocols minimizing damage to pipes should be enforced. Since species have different capacities for penetrating stormwater pipes, appropriate species selection for urban environments where damaged pipes may occur could reduce incidences of pipe damage.

Keywords: Root Penetration of Polyvinyl Chloride (PVC) Stormwater and Sewer Pipes

Current Articles | Browse Archives | Search | AUF Home | ISA Home | Get Acrobat