3. Many named communities may have no separate postal code number or no separate town government, yet they appear on maps and bear tree names. This article, then, is an appeal for input from ISA members. You know your state. Which of your towns have names of trees (English or any other language, especially in languages of Indian tribes in your area)? Please send your information to:

F.W. Holmes, 24 Berkshire Terrace, Amherst, Massachusetts 01002. And, if you would like my two lists for your state, send a #10 envelope bearing your name and address, plus $1.00 (for postage and photocopying).

Director, Shade Tree Laboratories
University of Massachusetts
Amherst, Massachusetts 01003

INDICES TO THIRTEEN YEARS OF ISA RESEARCH GRANTS
by Francis W. Holmes

The Memorial Research Trust of the International Society of Arboriculture supports research on tree care with grants. The projects are prioritized by a research committee of the ISA and selected by the trustees of the Memorial Research Trust. A major component in the selection procedure is the usefulness of the obtained data to the arborist. The Trust through 1987 had distributed funds to 132 projects. These cover a wide range of subjects and have been distributed to several states, provinces, institutions and scientists. The four indices that follow will illustrate the scope and distribution.

The number in the index that follows the subject or name refers to the number of the grant. These are listed in your 1987 ISA Yearbook beginning on page 27. Please refer to this yearbook for a more complete understanding of these indices.

SUBJECT INDEX

<table>
<thead>
<tr>
<th>Subject</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acclimatizing trees</td>
<td>53</td>
</tr>
<tr>
<td>Adapting to land-fill gas...</td>
<td>114</td>
</tr>
<tr>
<td>...role of mycorrhize</td>
<td></td>
</tr>
<tr>
<td>Adaptability to poorly aerated soils</td>
<td>50</td>
</tr>
<tr>
<td>Air pollution</td>
<td>7, 35</td>
</tr>
<tr>
<td>Anatomical effects</td>
<td>45</td>
</tr>
<tr>
<td>Anti-viral compounds</td>
<td>44</td>
</tr>
<tr>
<td>Arborist practices (I.P.M.)</td>
<td>71</td>
</tr>
<tr>
<td>Apple scab control</td>
<td>100</td>
</tr>
<tr>
<td>Apple tree borer, flat-headed...</td>
<td>111</td>
</tr>
<tr>
<td>...control of</td>
<td></td>
</tr>
<tr>
<td>Arid environment</td>
<td>110</td>
</tr>
<tr>
<td>Armillaria mellea...</td>
<td>97</td>
</tr>
<tr>
<td>...rhizomorph development</td>
<td></td>
</tr>
<tr>
<td>Ash, remedy for chlorosis</td>
<td>98</td>
</tr>
<tr>
<td>Austrian pine, improvement of</td>
<td>90</td>
</tr>
<tr>
<td>Backfill effects on roots</td>
<td>46</td>
</tr>
<tr>
<td>Bacteria, xylem-related (oak scorch)</td>
<td>75</td>
</tr>
<tr>
<td>Bagworm populations</td>
<td>66</td>
</tr>
<tr>
<td>Bark-beetles (elm)</td>
<td>75</td>
</tr>
<tr>
<td>...attracted by pruning on wrong date</td>
<td>104</td>
</tr>
<tr>
<td>...feeding on eims</td>
<td>79</td>
</tr>
<tr>
<td>Barrier zones (re vascular combium)</td>
<td>73</td>
</tr>
<tr>
<td>Baskets, wire, effects on tree growth</td>
<td>113</td>
</tr>
<tr>
<td>Benefits of trees</td>
<td>7</td>
</tr>
<tr>
<td>Benomyl</td>
<td>2</td>
</tr>
<tr>
<td>Bursaphelenchus lignicolus</td>
<td>51</td>
</tr>
<tr>
<td>Branch dieback, of dogwood</td>
<td>69</td>
</tr>
<tr>
<td>Beta-glucoside level/microbial ecology...</td>
<td></td>
</tr>
<tr>
<td>...of salt-injured sugar maples</td>
<td>91</td>
</tr>
<tr>
<td>Biochemical effects</td>
<td>45</td>
</tr>
<tr>
<td>Biological controls</td>
<td>61, 66</td>
</tr>
<tr>
<td>Birch</td>
<td>31, 34</td>
</tr>
<tr>
<td>Birch, paper</td>
<td></td>
</tr>
<tr>
<td>...defoliation stress vs. borers</td>
<td>123</td>
</tr>
<tr>
<td>...moisture stress vs. borers</td>
<td>123</td>
</tr>
<tr>
<td>...nutrient stress vs. borers</td>
<td>123</td>
</tr>
<tr>
<td>...resistance to bronze birch borer</td>
<td>123</td>
</tr>
<tr>
<td>Borer</td>
<td>31, 34, 42</td>
</tr>
<tr>
<td>...apple flat-headed, in maple, control</td>
<td>111</td>
</tr>
<tr>
<td>...bronze birch, resistance in paper</td>
<td></td>
</tr>
<tr>
<td>...birch</td>
<td>123</td>
</tr>
<tr>
<td>...entomogenous nematodes against</td>
<td>129</td>
</tr>
<tr>
<td>...two-lined chestnut, prediction in</td>
<td></td>
</tr>
<tr>
<td>...oaks</td>
<td>130</td>
</tr>
<tr>
<td>Branch dieback, of dogwood</td>
<td>69</td>
</tr>
<tr>
<td>Bursaphelenchus lignicolus</td>
<td>51</td>
</tr>
</tbody>
</table>
LOCATION INDEX

STATE or TERRITORY (U.S.A)

Alabama 77
Alaska --
Arizona --
Arkansas --
California 19, 58, 61, 74, 82, 101, 106
Colorado 13, 63, 76, 84, 86, 103
Connecticut --
Delaware --
District of Columbia 45
Florida 127
Georgia 24, 60, 75
Hawaii --
Idaho 46, 68
Illinois 10, 27, 43, 49, 108, 131
Indiana 23, 50, 94, 106, 109, 132
Iowa 55, 88
Kansas 85, 119
Kentucky 42, 65, 70, 111, 117, 120, 130
Louisiana 51
Maine 2, 67, 73
Maryland 97
Massachusetts 3, 9, 44, 102
Michigan 15, 34, 47, 48, 90, 99, 123
Minnesota 17, 37, 71, 78, 104
Mississippi --
Missouri --
Montana --
Nebraska --
Nevada --
New Hampshire 1
New Jersey 6, 93, 114, 129
New Mexico 98
New York 16, 22, 26, 35, 53, 69, 80, 83, 96, 126
North Carolina --
North Dakota --
Ohio 7, 31, 40, 72, 89, 105, 122, 125
Oklahoma 8, 57, 95
Oregon 12, 32, 54, 128
Pennsylvania 11, 20, 66, 87
Puerto Rico --
Rhode Island --
South Carolina --
Tennessee 14, 28, 59
Texas 21, 25, 115
Utah 110, 112, 115
Vermont 39, 91

INSTITUTION INDEX

Alice Holt Lodge (Surrey, England, ...UK) 79
Auburn University 76
Brigham Young University 115
Brooklyn Botanical Garden, Ossining 69
California Polytechnic State Univ. 58
Cary Arboretum 35
Colorado State University 13, 63, 76, 84, 86, 103
Cornell University 16, 22, 26, 53, 80, 83, 126
Dickinson College (Carlisle, PA) 66
Dow Gardens (Midland, MI) 99, 123
Forest Research Station (Surrey, UK) 79
Illinois Natural History Survey 27, 43, 102
Kansas State University 85, 119
Iowa State University 55, 88
Laval University (Sillery, Que) 92
Louisiana State University 51
Michigan State University 15, 34, 47, 48
Morden (Man.) Research Station 18
Morris Arboretum 11
Morton Arboretum (Lisle, IL) 118, 121
New Mexico State University 98
Ohio State University: ...Columbus 40, 72, 89, 105, 125
...Wooster (OARDC) 31, 122
Oklahoma State University 8, 57, 95
Oregon State University 12, 32, 54
Pennsylvania State University 20, 87
Purdue University 23, 50, 94, 100, 108, 109, 132
Rutgers University 6, 129
...Cook College of 93, 114
State University of New York (SUNY): ...at Syracuse 96
Tennessee Technological University 28
Texas A & M University: ...at College Station 21
...at Dallas 25
University of British Columbia 81
University of California: ...at Berkeley 74, 101, 106
...at Davis 19, 61
...at Riverside 82
University of Florida 127
University of Georgia 24, 60, 75
University of Guelph (Ont) 30, 33, 64
113, 124
University of Idaho 46, 68
University of Illinois 10, 49
University of Kentucky 42, 65, 70, 111
117, 120, 130
University of Maine 2, 67, 73
University of Maryland 97
University of Massachusetts 3, 9, 44
University of Minnesota: ...at St. Paul 17, 37, 78, 104
...at Waseca (Tech. College) 71
University of Tennessee 14, 59
University of Toronto 4, 5
University of Vermont 39, 91
University of Washington (Seattle) 36, 52
University of Wisconsin: ...at Madison 29, 41, 56
...at Stevens Point 38
U.S. Department of Agriculture: ...Agricultural Research Service: ...Corvallis-(OR) 128
...Delaware (OH) 7
...Forest Service: ...Durham (NH) 1
Independent of Institution
University of Arboriculture (Bryan, TX) 116
SCIENTIST INDEX

<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrios, G N</td>
<td>44</td>
<td>Harris, M K</td>
<td>21</td>
</tr>
<tr>
<td>Andresen, J W</td>
<td>4, 5</td>
<td>Hart, E</td>
<td>88</td>
</tr>
<tr>
<td>Ascerno, M E</td>
<td>104</td>
<td>Hartman, J R</td>
<td>117</td>
</tr>
<tr>
<td>Baker, F A</td>
<td>110</td>
<td>Herms, D A</td>
<td>99, 123</td>
</tr>
<tr>
<td>Baker, R</td>
<td>21</td>
<td>Hibben, C R</td>
<td>69</td>
</tr>
<tr>
<td>Ball, J J</td>
<td>71</td>
<td>Himelick, E B</td>
<td>43, 102</td>
</tr>
<tr>
<td>Bassuk, N L</td>
<td>53, 80, 83, 126</td>
<td>Hosil, J P</td>
<td>92</td>
</tr>
<tr>
<td>Blanchette, R A</td>
<td>37</td>
<td>Hudler, G W</td>
<td>22</td>
</tr>
<tr>
<td>Boe, A A</td>
<td>46</td>
<td>Jacobi, W R</td>
<td>76, 103</td>
</tr>
<tr>
<td>Brand, K M</td>
<td>125</td>
<td>Johnson, W T</td>
<td>26</td>
</tr>
<tr>
<td>Brennan, E</td>
<td>93</td>
<td>Joly, R J</td>
<td>109</td>
</tr>
<tr>
<td>Calabrese, D M</td>
<td>66</td>
<td>Kalisz, P J</td>
<td>120</td>
</tr>
<tr>
<td>Campana, R J</td>
<td>2</td>
<td>Karnosky, D F</td>
<td>35</td>
</tr>
<tr>
<td>Chang, C J</td>
<td>75</td>
<td>Kaya, H K</td>
<td>61</td>
</tr>
<tr>
<td>Clark, J A</td>
<td>36</td>
<td>Kleibaso, J J</td>
<td>48, 90</td>
</tr>
<tr>
<td>Cohen, S D</td>
<td>97</td>
<td>Klett, J E</td>
<td>63, 84</td>
</tr>
<tr>
<td>Craker, L E</td>
<td>9</td>
<td>Kling, G J</td>
<td>49</td>
</tr>
<tr>
<td>Cranshaw, W S</td>
<td>86</td>
<td>Kuntz, J E</td>
<td>29, 41</td>
</tr>
<tr>
<td>Currier, C</td>
<td>98</td>
<td>Laemmli, F</td>
<td>15</td>
</tr>
<tr>
<td>Dahienen, DL</td>
<td>101</td>
<td>Lanier, G N</td>
<td>96</td>
</tr>
<tr>
<td>Dana, M C</td>
<td>94</td>
<td>Leone, I A</td>
<td>114</td>
</tr>
<tr>
<td>Dana, M N</td>
<td>108, 132</td>
<td>Linderman, R G</td>
<td>128</td>
</tr>
<tr>
<td>Davis, S H</td>
<td>6</td>
<td>Littré, R H</td>
<td>24</td>
</tr>
<tr>
<td>Davis, T D</td>
<td>115</td>
<td>Lumsa, G P</td>
<td>30, 33, 64, 113, 124</td>
</tr>
<tr>
<td>Dirr, M A</td>
<td>10, 60</td>
<td>McBride, J R</td>
<td>106</td>
</tr>
<tr>
<td>Dixon, R K</td>
<td>78</td>
<td>McGawley, E C</td>
<td>51</td>
</tr>
<tr>
<td>Donnelly, J R</td>
<td>39</td>
<td>McNabb, H S</td>
<td>55</td>
</tr>
<tr>
<td>Drilias, M J</td>
<td>29, 41, 56</td>
<td>Miller, J C</td>
<td>32</td>
</tr>
<tr>
<td>Driver, C H</td>
<td>52</td>
<td>Miller, R W</td>
<td>38</td>
</tr>
<tr>
<td>Dunn, J P</td>
<td>130</td>
<td>Mitchell, C A</td>
<td>50</td>
</tr>
<tr>
<td>Dutcher, J D</td>
<td>24</td>
<td>Moorman, G W</td>
<td>87</td>
</tr>
<tr>
<td>Fuchigami, L H</td>
<td>12</td>
<td>Morgan, D L</td>
<td>25</td>
</tr>
<tr>
<td>Gaugler, R R</td>
<td>129</td>
<td>Morselli, M F</td>
<td>91</td>
</tr>
<tr>
<td>Gerhold, H D</td>
<td>20</td>
<td>Mower, R</td>
<td>16</td>
</tr>
<tr>
<td>Gibbons, F D</td>
<td>85</td>
<td>Nielsen, D G</td>
<td>31</td>
</tr>
<tr>
<td>Gilliam, C H</td>
<td>77</td>
<td>Ostrofsky, W D</td>
<td>73</td>
</tr>
<tr>
<td>Gilman, E F</td>
<td>127</td>
<td>Parmeter, J R</td>
<td>74</td>
</tr>
<tr>
<td>Goodell, B S</td>
<td>54, 67</td>
<td>Partridge, A D</td>
<td>68</td>
</tr>
<tr>
<td>Green, T L</td>
<td>131</td>
<td>Pecknold, P</td>
<td>100</td>
</tr>
<tr>
<td>Hamilton, D F</td>
<td>23</td>
<td>Pellett, H</td>
<td>17</td>
</tr>
<tr>
<td>Pittenger, D R</td>
<td>82</td>
<td>Potter, D A</td>
<td>42, 65, 70, 111</td>
</tr>
<tr>
<td>Rhoads, A F</td>
<td>11</td>
<td>Rice, R P</td>
<td>58</td>
</tr>
<tr>
<td>Robbin, J A</td>
<td>119</td>
<td>Roberts, B R</td>
<td>7</td>
</tr>
<tr>
<td>Sachs, R</td>
<td>19</td>
<td>Santamour, F S</td>
<td>45</td>
</tr>
<tr>
<td>Schoenefeuss, D F</td>
<td>27</td>
<td>Shigo, A L</td>
<td>1</td>
</tr>
<tr>
<td>Simmons, G A</td>
<td>34</td>
<td>Sinclair, W A</td>
<td>22</td>
</tr>
<tr>
<td>Smith, L D</td>
<td>28</td>
<td>Stim, J A</td>
<td>43</td>
</tr>
<tr>
<td>Stipes, J R</td>
<td>62</td>
<td>Sydnor, T D</td>
<td>40, 72, 89, 105</td>
</tr>
<tr>
<td>Straley, G B</td>
<td>81</td>
<td>Tatter, T A</td>
<td>3</td>
</tr>
<tr>
<td>Swanson, B T</td>
<td>13</td>
<td>Tukey, H B</td>
<td>52</td>
</tr>
<tr>
<td>Talhouns, S N</td>
<td>122</td>
<td>Van Arsdale, E P</td>
<td>116</td>
</tr>
<tr>
<td>Van de Werken, H</td>
<td>14, 59</td>
<td>Watson, G W</td>
<td>47, 118, 121</td>
</tr>
<tr>
<td>Webber, J F</td>
<td>79</td>
<td>Whitcomb, C E</td>
<td>8, 57, 95</td>
</tr>
<tr>
<td>Wof, G L</td>
<td>29, 41</td>
<td>Worley, R E</td>
<td>24</td>
</tr>
</tbody>
</table>

ISA Research Committee Chair
Director, Shade Tree Laboratories
University of Massachusetts
Amherst, Massachusetts 01003