Groundcovers, Organic and Inorganic Mulches, and Masonry Surfaces Differentially Affect Establishment and Root Zone Characteristics of Urban Trees

Michael A. Arnold and Garry V. McDonald

Abstract. Three experiments investigated the effects of various groundcovers on establishment of redbuds [Cercis canadensis L. var. texensis (S. Watson) M. Hopkins ‘Alba’] and baldcypress [Taxodium distichum (L.) Rich.]. The first experiment involved eight surface treatments. Controls were bare soil. Remaining treatments were pine bark mulch; Asian jasmine [Trachelospermum asiaticum (Siebold & Zucc.) Nakai]; St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze]; decorative gravel; recycled paper mulch; decorative brick pavers; or seasonal rotations of herbaceous annuals. Other experiments compared brick-on-sand treatments ranging in color from light blonde to dark charcoal with bare soil on establishment of redbuds or baldcypress. Most organic and living soil surface covers were preferable to bare soils, however, some inorganic surface covers were detrimental to tree growth. Paving surfaces adversely affected survival, shoot or root growth, but differences were species dependent. Soil moisture, pH, and bulk density did not appear to be limiting under pavers, but substantial seasonal fluctuations in soil temperatures were observed. Light and medium bricks reflected more photosynthetically active radiation than dark bricks or bare soil. Atmospheric temperatures were greatest above dark and medium bulk density did not appear to be limiting under pavers, but substantial seasonal fluctuations in soil temperatures were observed. Light and medium bricks reflected more photosynthetically active radiation than dark bricks or bare soil. Atmospheric temperatures were greatest above dark and medium bricks. Root growth decreased as darkness of brick color increased. Redbud survival and growth were more adversely affected than with baldcypress.

Key Words. Baldecypress; Brick-on-Sand Paving; Cercis canadensis var. texensis; Groundcovers; Herbaceous Annuals; Inorganic Mulch; Organic Mulch; Plant Competition; Redbud; Taxodium distichum; Transplant Establishment; Tree Establishment.

In situations that permit the space, many arboriculture practitioners recommend mulching trees to the extent of the drip line or beyond (Carlson 2002). However, tree establishment in urban environments often occurs in limited rooting volumes, such as planting pits in sidewalks or in parking lot islands. Soil surface covers can be highly variable, depending on the pedestrian traffic and intended use in the area, in addition to the level of maintenance desired. Inorganic groundcovers, such as decorative gravel or brick-on-sand pavers may be used where heavy pedestrian traffic is anticipated while areas with lighter foot traffic may involve the use of organic mulches or living groundcovers such as turfgrass or vines. Areas with high visibility may be covered with decorative organic groundcovers, including pine bark; or rotations of seasonal herbaceous annuals (seasonal color changes) may be planted cyclically throughout the year in beds beneath the trees. In other cases, environmentally friendly soil surface covers, such as recycled paper products, may be used.

While studies have addressed various characteristics of mulches relative to their durability (Litzow and Pellett 1983; Skroch et al. 1999), attractiveness (Ashworth and Harrison 1983; Skroch et al. 1992; Duryea et al. 1999), effects on soil physical or chemical characteristics (Stephenson and Schuster 1945; Fraedrich and Ham 1982; Watson 1988; Hartz and Gianni 1998; Duryea et al. 1999), and to a limited extent their absorption or reflectance of sunlight or heat (Kjelgren and Montague 1998), information is limited about their relative effects on tree establishment. In most cases, information on tree establishment is limited to studies investigating nonliving organic groundcovers, such as composted or chipped mulches, or plastics based inorganic groundcovers such as polyethylene or polypropylene plastic or woven mats (Litzow and Pellett 1983; Green and Watson 1989). Likewise, limited information is available on the impacts of living groundcovers on the establishment of trees, but some reports of allelopathic influences (Walters and Gilmore 1976; Todhunter and Chan 1979) or at least competitive effects (Green and Watson 1989; Downer and Hodel 2001; Arnold and McDonald 2008) of turfgrass has been reported on tree establishment.

Taxodium distichum and C. canadensis were selected as the test species since they are commonly planted and have contrasting tolerances to urban sites. Cercis canadensis represents a species native to woodland edges and areas with well-drained soils (Arnold 2008). Cercis canadensis is popular for its ornamental foliage, growth form, and spring flowers, but tends to be susceptible to mechanical bark injury, grows poorly on compacted soils, and is often short-lived in urban landscapes in southern U.S. (Gilman 1997; Arnold 2008). Alternately, T. distichum is native to wet sites with poorly drained soils, but also tolerates drier sites, and is known to perform well in many urban sites with slightly alkaline to acidic soils with attention to appropriate provenances (Gilman 1997; Arnold 2008).

The objectives of the experiments presented herein were to: 1) compare effects of a range of commonly utilized inorganic and organic mulches, living groundcovers, and seasonal rotations of herbaceous annuals on establishment of C. canadensis; and 2) compare the effects of various colors of brick-on-sand pavers on the establishment of two tree species, T. distichum which is tolerant of urban conditions and C. canadensis which is less tolerant of urban conditions, high root zone temperatures, and reflected irradiances.
MATERIALS AND METHODS

Study 1: Organic Mulches, Inorganic Mulches, and Living Groundcovers Impact Eastern Redbud Establishment

Forty planting pits of 1.1 m x 1.5 m (3.5 ft x 5 ft) dimensions were established at the Texas A&M University Horticulture Gardens (lat. 30°E37.78’N, long. 96°E20.51’W) in College Station, Texas, U.S., on May 29, 1998. Cells were established in existing 3.7 m x 12.2 m (12 ft x 40 ft) beds filled with a Silawa fine sandy loam (siltic, thermic ultic haplustalfs, 73% sand, 9% clay, 18% silt) surrounded by treated landscape timbers. Soils in the pits were tilled to a 25.4 cm (10 in) depth. Cells were divided by sinking sheet metal edging 20.3 cm (8 in) deep to contain surface roots beneath the individual soil surface treatments. Irrigation was provided via stationary risers installed at 30.4 cm (12 in) above grade level with a 100% overlapping spray pattern. Irrigation was applied twice weekly to maintain adequate moisture by pulse irrigating for 20 min. intervals until tensiometer readings in the soil returned to below -15 kPa (-0.15 bars). Forty 23.3 L (#7) containers grown Cercis canadensis var. texensis ‘Alba’ grafted on C. canadensis var. texensis seedling rootstocks were obtained in advance from Turkey Creek Farms, Humble, TX, and acclimated on site for 10 days prior to transplanting to the planting pits. Trees were established one to the center of each planting pit prior to the imposition of soil surface treatments. Eight soil surface treatments were imposed with five replicates each. The control consisted of bare soil with no cover. The remaining seven treatments consisted of 7.6 cm (3 in) depth of pine bark mulch; Trachelospermum asiaticum on 30 cm (12 in) centers mulched with 7.6 cm of pine bark; solid-sodded Stenotaphrum secundatum; 7.6 cm of white decorative gravel (Parkers River Pebbles, Pursell Industries, Inc., Sylacauga, AL); 2.5 cm; 7.6 cm of pine bark. The seasonal herbaceous color plant rotation used to estimate soil bulk density. A duplicate set was extracted and dried at 50°C (122°F) to a constant mass. These cores were 1.3 cm (0.5 in) below the mulch layer to a depth of 10 cm (3.9 in) and dried at 50° C (122°F) to a constant mass. These cores were used to estimate soil bulk density. A duplicate set was extracted at the same time and used to measure soil pH (Accumet®, Model 20, pH/conductivity meter, Fisher Scientific, Pittsburgh, PA). Soil moisture potential was measured weekly from April through September using tensiometers (Model 2725 JetFill Tensiometers, Soil Moisture Equipment Corp., Santa Barbara, CA) inserted to a 15.2 cm (6 in) depth. Midday xylem water potentials to estimate maximal water stress and subsequent pre-dawn xylem water potentials to estimate recovery from water stress were determined monthly for each tree using a pressure chamber (Model 610, PMS Instrument Company, Albany, Ore). A single, recently fully expanded leaf was detached and immediately placed in the chamber for measurement in the field for each tree. Midday water potentials were determined between noon and 2:00 pm. Pre-dawn water potentials were determined between 3:30 am and dawn. Tree height, trunk diameter at 15.2 cm above the soil surface, and foliar stress ratings were recorded monthly during the growing season. Foliar stress ratings, as described in Arnold et al. 2005 and Arnold et al. 2007, were estimated as the proportion of the canopy to the nearest 10% exhibiting chlorosis, necrosis or abscission in the canopy. Transpiration and stomatal conductance were measured on October 21, 1999 (Portable Photosynthesis System Model Li-6200 with a CO₂ Analyzer Model 6250, Li-Cor, Lincoln, NE), with mean PPFD, leaf temperatures, and relative humidity of 956 mmol·m⁻²·s⁻¹, 27.2°C (81.0°F), 20.8%, respectively. Root-zone [0 to 10.2 cm (0 to 4 in) depth] and trunk temperatures (15.2 cm height) were monitored on May 6–18, 1999, using 10.2 cm (4 in) Cole-Parmer 400 series thermistor penetration probes attached to a logging Digi-Sense® scanning thermocouple thermometer (Cole-Parmer, Vernon Hills, IL). Three recently fully expanded leaves were selected from the south side of each tree for transpiration and stomatal conductance measurements. Throughout the second growing season, percent of the soil covered by the soil surface covers and the percentage of the soil surface covered by weeds were estimated monthly during the growing season to assess the efficacy of the soil surface cover in suppressing weed establishment. After weed estimates were recorded, the weeds were removed by hand weeding. Tree height, caliper at 15.2 cm above the soil surface, and foliar stress ratings were measured monthly during the growing season. Trees were harvested in December 1999.

The statistical design was a completely random design and was analyzed using Proc GLM procedures in SAS system for Windows, Release 9.1 (SAS Institute Inc., Cary, NC). Dead trees were treated as missing data points for measurements taken on dates after death. A one-way analysis of variance was used for measures taken on a single date, while those taken on multiple dates were analyzed as a two-way analysis of variance with soil surface treatments and dates as the main effects. When they were significant (P ≤ 0.05), treatment by time interactions were presented. If interactions were not found to be significant, then the main effects of treatments were tested. Where significant (P ≤ 0.05) effects were found, means were compared using the least squares means procedures.

Study 2: Masonry Color Affects on Tree Establishment with Brick-on-Sand Pavement

Texas Redbud Responses

In April 2001, twenty of the planting pits were reestablished with Cercis canadensis var. texensis ‘Alba’ using four surface coverage treatments with five randomly distributed replications of each treatment. The control was a bare or fallow soil surface. The other treatments consisted of three colors of decorative concrete brick-shaped pavers (Bermuda design pavers, Matt Stone, Inc., Tampa, FL) on a 5.1 cm deep bed of builder’s sand with an open space in the center for the tree. Brick colors ranged from a pale blond tan, red-brown, to a dark charcoal color. Bricks were chosen with the
aid of the manufacturers to reduce variation in physical and chemical properties, aside from color, to the greatest extent possible. Irrigation was applied as explained in the previous study. Soil moisture potential was measured weekly from April through September using tensiometers (Model 2725 JetFill Tensimeters, Soil Moisture Equipment Corp., Santa Barbara, CA). Pre-dawn and midday xylem water potentials were determined monthly during the growing season for each tree using a pressure chamber as previously described. Tree height, trunk diameter at 15.2 cm above the soil surface, and foliar stress ratings were recorded monthly during the growing season. Temperatures in the top 10.2 cm of soil or sand, and in the atmosphere at 1.3 cm (0.5 in) above the surface of the soil or bricks, were measured as previously described during July 9–13, 2001. Reflected and horizontally diffused light (LI-185B and LI-210SP photometric sensor, LI-COR, Lincoln, NE) and atmospheric temperatures at 5.1, 15.2, 30.4, and 90 cm (2, 6, 12, and 36 in, i.e.; from ground level to just below the canopy) were recorded for three plots from each treatment between noon and 2:00 pm on July 6, 2001. In these cases, sensors were aimed downward facing the soil surface at the appropriate heights to measure reflected and horizontally diffused light, rather than skyward when measuring ambient sunlight. The experiment was discontinued after the first year due to excessive loss of redbud trees in the brick treatments near the end of the year. Data was analyzed as described in the first experiment.

Baldecypress Responses

On November 28, 2001, the brick-on-sand experiment was re-established utilizing *Taxodium distichum* as a test species, due to its ability to better withstand adverse conditions in the region (Arnold 2008). Temperatures in the top 10.2 cm of soil or sand, in the atmosphere at 2.54 cm (1 in) above the surface of the soil or bricks, were measured as previously explained from November 15–24, 2002. Growth, stem xylem water potentials, and soil water potentials were monitored as previously described, except that an entire tree was harvested after the first year for physiological determinations with baldecypress in place of the single leaves used with the Texas redbud. Additionally, in December 2002, bricks, sand, and soil were excavated to a depth of 20.3 cm (8 in) and roots sifted from the substrates outside of the originally planted root ball. These roots were dried [three days at 50°C (122°F)] and a mean regenerated root density (mass per unit volume) was calculated for each planting pit. Data were analyzed as described in the first experiment.

RESULTS AND DISCUSSION

Study 1: Organic Mulches, Inorganic Mulches, and Living Groundcovers Impact Eastern Redbud Establishment

Survival was 100% during the first year, while five trees were lost during the second year, one each in the bare soil, ornamental aggregate, and *T. asiaticum* plots, while two from the brick-on-sand plots were lost. Also, a third tree had nearly defoliated by autumn in the brick-on-sand plots. Interestingly, all of the soil surface covers resulted in a greater height and trunk diameter growth for surviving trees of *C. canadensis* than the bare soil treatment (Table 1), except brick-on-sand which had similar height growth as the bare soil treatment. This was the case even with those treatments where living groundcovers were used that might have competed with the trees for water and nutrients. Pine bark mulch resulted in lower percentages of the canopy of *C. canadensis* exhibiting foliar stress symptoms in comparison to recycled paper or brick-on-sand treatments (Table 1). While all trees survived during the first growing season after transplant; on average, 90% of the canopy of trees in brick-on-sand plots exhibited symptoms offoliar stress (e.g., chlorosis, marginal necrosis or abscission). Litow and Pellett (1983) reported better growth of *Fraxinus pennsylvanica* Marsh., with several types of organic mulches compared to bare soils.

Trees grown in pine bark mulch also had less negative mean midday xylem water potentials throughout the season than those grown in bare soil, or with recycled paper, St. Augustinegrass, decorative gravel, or brick-on-sand treatments (Table 1). However, all except the trees in brick-on-sand treatments recovered from the prior day’s maximal midday water potential stress.

<table>
<thead>
<tr>
<th>Soil surface treatment</th>
<th>Tree height (cm)</th>
<th>Trunk diameter (mm)</th>
<th>Foliar stress symptoms (% of canopy)</th>
<th>Xylem water potential<sup>z</sup></th>
<th>Soil water<sup>x</sup></th>
<th>Soil</th>
<th>1st Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare soil</td>
<td>183 b<sup>u</sup></td>
<td>28.6 b<sup>u</sup></td>
<td>42 bc<sup>u</sup></td>
<td>-2.35 b<sup>u</sup></td>
<td>-0.50 abx<sup>u</sup></td>
<td>-15.4 de<sup>u</sup></td>
<td>3.778 abc<sup>u</sup></td>
</tr>
<tr>
<td>Pine bark mulch</td>
<td>207 a</td>
<td>34.7 a</td>
<td>30 c</td>
<td>-1.99 a</td>
<td>-0.41 a</td>
<td>-13.3 cd</td>
<td>4.560 ab</td>
</tr>
<tr>
<td>Recycled paper</td>
<td>209 a</td>
<td>33.6 a</td>
<td>76 ab</td>
<td>-2.30 b</td>
<td>-0.43 a</td>
<td>-16.2 de</td>
<td>3.473 bc</td>
</tr>
<tr>
<td>Asian jasmine</td>
<td>200 ab</td>
<td>33.8 a</td>
<td>66 ab</td>
<td>-2.14 ab</td>
<td>-0.44 a</td>
<td>-9.9 b</td>
<td>2.885 c</td>
</tr>
<tr>
<td>St. Augustinegrass</td>
<td>223 a</td>
<td>35.4 a</td>
<td>52 abc</td>
<td>-2.34 ab</td>
<td>-0.44 a</td>
<td>-13.1 bcd</td>
<td>4.856 a</td>
</tr>
<tr>
<td>Rotated annuals</td>
<td>215 a</td>
<td>34.5 a</td>
<td>38 bc</td>
<td>-2.21 ab</td>
<td>-0.45 a</td>
<td>-17.9 e</td>
<td>4.718 ab</td>
</tr>
<tr>
<td>Decorative gravel</td>
<td>208 a</td>
<td>35.3 a</td>
<td>54 ab</td>
<td>-2.27 b</td>
<td>-0.46 a</td>
<td>-10.8 bc</td>
<td>3.702 abc</td>
</tr>
<tr>
<td>Brick-on-sand</td>
<td>185 b</td>
<td>34.7 a</td>
<td>90 a</td>
<td>-2.28 b</td>
<td>-0.60 b</td>
<td>-6.6 a</td>
<td>3.670 abc</td>
</tr>
</tbody>
</table>

^aValues are means of eight monthly observations from each of five plots per treatment.
^bTranspiration was measured on October 21, 1999.
^cInitial soil pH on the site was 6.84±0.06.
^dInitial soil density on the site was 1.17±0.05 g∙cm⁻³ (0.42±0.002 lb∙in⁻³).}

Table 1. Effects of Soil Surface Covers on Tree Growth, Physiological Measures, and Soil Moisture Potential. Growth of Texas redbuds were compared in simulated 1.1 m x 1.8 m (3.5 ft x 6 ft) planting pits with surfaces covered with bare soil or one of seven combinations of organic, inorganic or living groundcovers.
stress to similar predawn water potentials (Table 1). While the more negative predawn xylem water potentials of *C. canadensis* in brick-on-sand treatments may have contributed to the poor survival rates and foliar stress ratings relative to the other treatments, it was not likely attributable to a lack of available soil moisture as the brick-on-sand soils had less negative soil water potentials than any of the other treatments (Table 1).

Asian jasmine plots had the next, least negative soil water potential, while rotated annuals, recycled paper, and bare soils had the most negative soil water potentials (Table 1). This might be expected for bare soils which would likely have higher rates of evapotranspiration from the uncovered soil than those with a surface cover. The plots with herbaceous annuals might also be expected to have more negative soil water potentials as the annuals would also compete for available moisture with the trees. This study observed that the recycled paper mulch tended to form a crust-like surface as it dried after wetting which may have impeded penetration of precipitation or surface applied irrigation. Although soil moisture was available for trees in the Asian jasmine plots, these trees had the lowest transpiration rates when measured near the end of the study (Table 1), suggesting some competition may have been underway between the trees and Asian jasmine for the available soil moisture.

It was interesting to note that while St. Augustinegrass may have—on average across the growing season—induced some water stress relative to pine bark treatments, by the time transpiration was sampled in autumn (Table 1), *C. canadensis* in St. Augustinegrass plots had one of the greater transpiration rates. This may have been due to the slower growth of St. Augustinegrass, which is a warm season turfgrass (Duble 1996; Arnold 2008), during the cooler temperatures of autumn which would have minimized its competition for soil moisture. Increased transpiration and stomatal conductance of various cultivars of crape-myrtle (*Lagerstroemia indica* L.) in containers on Bermudagrass turf (*Cynodon dactylon* L.) surfaces were reported in comparison to pine bark mulched surfaces or bare soil (Zajicek and Heilman 1991); however, this represented only effects of canopy modifications of light or heat reflectance and/or relative humidity as no root interactions were possible between the turf and trees in their study. Green and Watson (1989) reported increased trunk diameter and crown growth of *Acer saccharinum* Marsh., grown in 2.4 m (8 ft) mulched circles of composed leaves and wood chips relative to trees with an unspecified turfgrass growing up to the trunks. They also reported reduced tree root density under the turfgrass relative to mulched surfaces. Growth of *F. pennisylvanica* during establishment was reported to increase in proportion to the surface areas of Bermudagrass turf controlled either manually, chemically, or with pine bark mulch beneath the tree canopy (Arnold and McDonald 2008). These results concurred with the results of the previous two studies in respect to mulches generally promoting increased tree growth; however, the St. Augustinegrass in our study did not impede the growth of *C. canadensis* or reduce tree transpiration (Table 1). This might be due to species differences in the trees or turfgrasses, differences in irrigation practices among the studies, or perhaps due to the time of year in which transpiration measurements were collected.

Asian jasmine achieved nearly 90% soil surface coverage within three months, and St. Augustinegrass maintained a high degree of coverage (88% to 100%) until late in the season, from 71% to 72%, when temperatures cooled. Surface coverage by rotated herbaceous annuals was variable (20% to 95%) as seasonal color changes were removed and new ones established. Herbaceous annual color coverage was greatest in the spring transition season (95% in April with *P. × hybridra*) and latter portion of the summer annual season (72% to 74% from August to October with *C. roseus*). The extensive mass of herbaceous tissues on the annuals during these periods likely contributed to the drying of the soils in these treatments noted earlier (Table 1). Despite the necessity of shallow soil disturbance when removing and installing color changes, no adverse effects on tree growth or transpiration were observed (Table 1). Installation of color changes was done by digging small holes as close as possible to accommodate the herbaceous plants’ root balls and these were typically small plants [six-cell packs, 158 cm³ (9.64 in³) in each cell]. A greater effect might have been seen on tree growth if more root zone disturbance were to have occurred if the plots with herbaceous annuals were tilled, or if herbaceous plants with larger root balls were planted.

Weed cover on control plots was greatest in April (7.8% of surface area), May (19%, mostly spurge (*Euphorbia L.*) and dallis grass (*Paspalum dilatatum* Poir.), and September (33%, mostly spurge and yellow nitsedge (*Cyperus esculentus* L.)). Weed cover on control plots was greater (*P* ≤ 0.05) than that of most other surface covers throughout the season, with the exception of June and July when weed growth was less than 2.8% on all treatments. Decorative gravel had the second most extensive weed invasion in April (4%), May (6.2%), and September (13.2%), but only differed statistically (*P* ≤ 0.05) from the other soil surface covers (aside from bare soil) in September. It is interesting to note that of surviving *C. canadensis*, the lowest percentage increases in trunk diameter were associated with the two soil surface treatments which permitted the most weed growth, even though weed growth was very low in most treatments throughout the growing season. Aside from those instances enumerated above weed coverage was between 0.2% and 5.6%, in all treatments.

Gilman (1997) suggests that weed control was second only to irrigation as a cultural factor in initial establishment of landscape trees. Downer and Hodel (2001) reported that the primary benefit of mulching palms (*Arecaceae C.F. Schultz*) where water deficits occur might be the control of turfgrasses as competing weed species. Skroch et al. (1992) reported that several organic (pine bark, hardwood bark, cedar chips, and pine needles) and inorganic (polyethylene or propylene sheets) mulches were effective in reducing or eliminating weeds relative to bare soils, but they did not test recycled paper, gravel, rotated annuals or masonry surfaces. Weed suppression may be one reason that most any of the trees with soil surface covers, aside from brick-on-sand pavers, tended to grow better than those on bare soil. However, if this were the case one would expect to see more competition effects from the living groundcover treatments or rotations of herbaceous annuals.

Initial soil pH on the site prior to installation of the soil surface covers was 6.84±0.06 and initial soil density was 1.17±0.05 g cm⁻³ (0.042±0.002 lb in⁻³). Soil pH changed little among treatments during the course of the study (Table 1), varying only 0.25 pH units among all treatments, and were well within ranges suitable for most landscape plants (Foth 1990). Bulk densities did vary significantly (*P* < 0.05) by the end of the study with soils under the brick-on-sand and St. Augustinegrass turf exhibiting the greatest bulk densities compared to all other treatments except pine bark (Table 1). Some tamping of the sand beneath the bricks at installation and pressing in the St. Augustinegrass sod may explain the
higher bulk densities of these treatments. Sequential rotation of herbaceous annuals resulted in less dense soil in comparison to other treatments (Table 1). This is likely a result of the periodic soil disturbance and addition of organic matter associated with planting the rootballs of the herbaceous annuals three times per year. Organic soils are known to have substantially lower bulk densities than mineral or clay soils (Foth 1990; Chan 2006). However, none of the soil bulk densities in this experiment would approach the range of 1.46 to 1.75 g cm\(^{-3}\) (0.053 to 0.063 lb in\(^{-3}\)) depending upon the soil type (Craul 1992). Thus, changes in soil pH or bulk density are not likely causes for observed differences in growth responses associated with brick-on-sand treatments.

©2009 International Society of Arboriculture

Study 2: Masonry Color Affects on Tree Establishment with Brick-on-Sand Pavement

Texas Redbud Responses

The particularly poor performance of *C. canadensis* in brick-on-sand treatments in the first study in comparison to other soil surface treatments and the greater variations in soil temperatures associated with inorganic soil surface covers led to the question of whether or not variously colored pavers with differing reflective properties could be used to mitigate the adverse effects of brick-on-sand treatments since they were commonly used around patio and street trees. As an indirect approximation of what shortwave radiation would be, photosynthetically active radiation (PAR) reflectance indicated that the lighter colored paving bricks did reflect a greater proportion of the light (full sun = 2,094±8 μmol m\(^{-2}\)·s\(^{-1}\)·m\(^{-2}\)) striking their upper surface at the time of measurements (Figure 2A). The bare soil had the least reflectance of light, followed closely by the dark brick-on-sand pavers. Reflected light decreased through 15 cm above the surface, then increased at 30 cm to 90 cm (Figure 2B). This pattern held across treatments, but was less pronounced on the bare soil and darkest brick surface. The greater PAR levels at 30 cm to 90 cm probably represent diffusion of light reflected from surrounding areas.

A differential temperature gradient existed above the treatments adjacent to the tree trunks with a 1°C (1.8°F) to 2°C (3.2°F) drop in temperature from 5 to 90 cm above the surfaces (Figure 2B). Interestingly, atmospheric temperatures above the darker colored bricks were 1°C to 2°C greater than above the darker colored surface of bare soil (Figure 2B). Perhaps this is due to differential infrared reflectance or reradiated heat from the warmer soil surfaces beneath trees with darker pavers. Root zone temperatures did not appear to differ substantially among brick paver treatments, but the root zones with any of the brick surfaces were as much as 10°C (18°F) hotter during peak afternoon heat than those with bare soil (Figure 3). These substantially higher soil temperatures during the hottest part of summer represent a much different effect than was observed in the preceding study when temperatures were monitored during the cooler spring months (Figure 1). Time course monitoring temperature probes placed adjacent to the south side of the trunks did not reveal consistent differential patterns among the surface treatments (data not presented), suggesting that excessive trunk heating was not a cause of growth differences among treatments.
Kjelgren and Montague (1998) report substantially elevated leaf temperatures of *F. pennsylvanica* and *Acer platanoides* growing over asphalt surfaces compared to turfgrass. Mulches may buffer soil temperature fluctuations, but mulches may also increase atmospheric temperatures above them by reradiating more heat or reflected light relative to soils covered with turfgrasses and various trees and shrubs respond differently to these conditions (Montague et al. 1998; Montague and Kjelgren 2004).

Cercis canadensis grown in bare soil had greater height growth, trunk diameter increase, and a lesser proportion of the canopy exhibiting stress symptoms than the light and medium brick surface trees (Table 2). Height growth and stress symptoms were also adversely affected by dark brick surfaces (Table 2). Although the mean soil water potential for the bare soil and dark brick treatments were more negative than the light brick treatments, differences were modest, averaging from -4.9 to -6.4 kPa (-0.049 to -0.064 bars) indicating that insufficient soil moisture alone may not be responsible for the growth differences found for *C. canadensis* among treatments.

Midday xylem water potentials increased during the season across treatments (data not presented), with xylem water potential differing substantially among the treatments only for *C. canadensis* from light colored brick treatments in August. At that time, midday xylem water potentials for trees with light bricks were more negative [-3.42 MPa (-34.2 bars)] than trees with medium or dark bricks, or bare soil [-2.1 MPa (-21 bars), -1.93 MPa (-19.3 bars), or -1.98 MPa (-19.8 bars), respectively]. Pre-dawn xylem water potentials followed a bit different pattern. Averaged across the season (Table 2), pre-dawn xylem water potentials indicated that the best recovery (least negative water potential) from the previous day’s water stress was with trees grown in bare soil, while the light colored brick trees had the poorest recovery. Pre-dawn water potentials for trees with medium and dark bricks was intermediate (Table 2). Soil water potentials were actually more negative under trees in bare soil than under those with brick-on-sand treatments, but the trees with bare soils still exhibited better pre-dawn recovery (less negative xylem water potentials) than those with brick-on-sand treatments (Table 2), suggesting that some factor other than soil moisture availability was likely involved in the responses. It is of interest to note that only trees in the bare soil treatments survived into the fall with low levels of canopy stress symptoms. All *C. canadensis* in the brick treatments were either dead or severely declining when the study was terminated in late fall. Thus, no quantitative measurements on the root systems of *C. canadensis* were made as the study was terminated. However, poor root growth out of the planted root ball was observed as the trees were removed from the plots to prepare for the next experiment (Figure 4). Results of this study suggested that any reductions in root zone heating with lighter colored brick pavers were insufficient to offset the effects of greater light / heat reflection into the canopy by the lighter colored pavers. However, due to the early loss of the trees, these results were tentative. Thus, the entire study was repeated using a more urban tolerant tree for our region, *Taxodium distichum* (Arnold 2008).
Table 2. Effects of soil surfaces on tree growth and soil water potential. Growth of Cercis canadensis var. texensis and Taxodium distichum were compared in simulated 1.1 m x 1.8 m (3.5 ft x 6 ft) planting pits with bare soil to surfaces covered with paving bricks of three colors (pale blond tan, red-brown or dark charcoal) on a 5.1 cm (2 in) base of builder’s sand.

<table>
<thead>
<tr>
<th>Soil treatment</th>
<th>Height (cm)</th>
<th>Trunk Diameter (mm)</th>
<th>Portion of the canopy with stress symptoms (%)</th>
<th>Soil water potential (kPa)</th>
<th>Predawn xylem water potential (MPa)</th>
<th>Height (cm)</th>
<th>Trunk diameter (mm)</th>
<th>Root density (mg/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare soil</td>
<td>235 a**</td>
<td>24.8 a**</td>
<td>28 c**</td>
<td>-6.4 a**</td>
<td>-0.26 c**</td>
<td>291 a**</td>
<td>70.0 a**</td>
<td>1.11 a**</td>
</tr>
<tr>
<td>Pale blond tan bricks</td>
<td>215 bc</td>
<td>21.3 b</td>
<td>44 ab</td>
<td>-5.5 bc</td>
<td>-0.83 a</td>
<td>269 a</td>
<td>71.0 a</td>
<td>0.76 ab</td>
</tr>
<tr>
<td>Red-brown bricks</td>
<td>200 c</td>
<td>21.6 b</td>
<td>56 a</td>
<td>-4.9 c</td>
<td>-0.48 b</td>
<td>289 a</td>
<td>71.3 a</td>
<td>0.68 ab</td>
</tr>
<tr>
<td>Dark charcoal bricks</td>
<td>219 b</td>
<td>24.3 a</td>
<td>42 b</td>
<td>-5.8 ab</td>
<td>-0.55 ab</td>
<td>297 a</td>
<td>68.8 a</td>
<td>0.56 b</td>
</tr>
</tbody>
</table>

* Shoot and root growth measures are values from the end of the study.
* Canopy stress symptoms and predawn xylem water potentials are means of five sample dates during growing season.
* Soil water potentials are means of 14 sample dates during growing season.
* Means followed by the same letters within a column are not different at P < 0.05 level using least squares means procedure.
* Values represent mean of 5 observations.
* Values represent mean of 25 observations.
* Values represent mean of 70 observations.

Alternatively, the differential water deficits between the bare soil plots and those with brick-on-sand pavers may have been too small to have induced differential growth responses, since the measured soil moisture deficits indicated reasonably moist soil conditions across treatments as would be expected given the irrigation regime. Taxodium distichum was more tolerant of the brick-on-sand treatments than was C. canadensis (Table 2) which is consistent with its purported better tolerance to urban sites (Gilman 1997; Arnold 2008). Several species native to swampy locations, like T. distichum, have been reported to have correlations among their ability to tolerate flooding and their response to supraoptimal root-zone temperatures as measured by growth, biomass accumulation, and survivorship (McLeod et al. 1986).

Temperature patterns during late autumn, after leaf drop, in the soils under T. distichum were very intriguing, revealing the important impacts of sun exposure to the surfaces (Figure 5). Under overcast skies on the first three days, almost no differences in soil temperatures were apparent among the various brick-on-sand treatments and bare soil (Figure 5). However during the remaining days represented in the graph (Figure 5), sunny skies and still nights prevailed resulting in as great or greater warming effects in soils of brick-on-sand treatments in comparison to bare soil as was observed for summer months in soils (Figure 3), under C. canadensis. Temperature modification objectives using various soil surface covers under trees might be quite different depending upon the climate. For instance, Litzow and Pellett (1983) report increased growth of F. pennsylvanica under mulches which raised soil temperatures in a cold climate (Minnesota), whereas in our work the opposite appears to be the case in a warm climate (Texas) with soil surface covers that raise the temperature.

These experiments indicate most organic and living soil surface covers were preferable to bare soils for tree establishment; however, some inorganic surface covers which are frequently utilized in suburban and urban environments could be detrimental to tree growth and survival relative to bare soil. The apparent lack of strong competition effects among living groundcovers and trees in this study may have been attributable to the well-watered and fertilized conditions, whereas living groundcovers may have exerted a greater competition effect under more resource limiting conditions. Paving surfaces, such as brick-on-sand pavers can adversely affect shoot and/or root growth, but the magnitude of such
differences were species dependent. Soil moisture did not appear to be a limiting factor under brick-on-sand pavers, but substantial fluctuations in soil temperatures with the use of brick-on-sand pavers were observed, and the direction and magnitude of these effects were seasonally dependent. More information on the seasonal nature of temperature effects of inorganic surface covers, expanded information on species responses, and elucidation of soil surface cover effects on other parameters such as soil oxygen levels are needed to identify suitable combinations of species and soil surface covers for urban environments in different climates.

Acknowledgments. This project was funded in part by Texas AgriLife Research (formerly the Texas Agricultural Experiment Station) and grants from the International Society of Arboriculture’s Research Trust (now TREE Fund), and the Texas Ornamental Enhancement Endowment. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the authors, Texas A&M University, or Texas AgriLife Research, and does not imply its approval to the exclusion of other products or vendors that also may be suitable.

Figure 5. Autumn temperatures in the root zone under Taxodium distichum grown with soil or pale blond tan (light), red-brown (medium), or dark charcoal (dark) brick-on-sand paving surfaces. The first three days were overcast and cloudy, whereas the remaining days were dominated by cloudless skies and still nights. Trees had largely defoliated by this time allowing exposure to full sun at the soil surface. Mean high and low atmospheric temperatures for the period were 20.7°C (69.2°F) and 7.2°C (45°F), respectively.

LITERATURE CITED

©2009 International Society of Arboriculture

Michael A. Arnold (corresponding author)
Department of Horticultural Sciences
Texas A&M University
Mail Stop 2133
College Station, Texas, 77843 U.S.

Garry V. McDonald
Department of Horticulture
University of Arkansas
Fayetteville, Arkansas, 72701 U.S.

Resumen. Tres experimentos investigaron los efectos de varios cubre pisos en el establecimiento de Cercis canadensis L. var. texensis (S. Watson) M. Hopkins ’Alba’ y Taxodium distichum (L.) Rich. El primer experimento incluyó ocho tratamientos superficiales. Los controles fueron el suelo desnudo. Los tratamientos restantes fueron mulch de corteza de pino; jazmín asiático [Trachelospermum asiaticum (Siebold & Zucc.) Nakai]; pasto [Stenotaphrum secundatum (Walt.) Kuntze]; mulch de papel reciclado; tabiques decorativos; o rotaciones estacionales de herbíceas anuales. Otros experimentos compararon tratamientos de tabiques sobre arena, variando en color de amarillo claro a carbón oscuro, con suelo desnudo en el establecimiento de Cercis y Taxodium. La mayoría de las coberturas orgánicas y vivas fueron preferibles a los suelos desnudos; sin embargo, algunas superficies inorgánicas fueron desfavorables para el crecimiento de los árboles. Las superficies pavimentadas afectaron adversamente la supervivencia, crecimiento de raíces o brotes, pero las diferencias fueron dependientes de las especies. La humedad del suelo, pH y densidad aparente no parecieron estar limitadas bajo pavi- mientos, pero se observaron fluctuaciones estacionales en temperatura del suelo. Los tabiques amarillos reflejaron más radiación solar fotosintética que los tabiques negros o el suelo desnudo. Las temperaturas atmosféricas fueron mayores en tabiques negros. El crecimiento de las raíces disminuyó a medida que el color negro aumentó. La supervivencia y el crecimiento de Cercis fue afectado más adversamente que con Taxodium.