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Widrlechner: Stress-Tolerant Plants

ENVIRONMENTAL ANALOGS IN THE SEARCH FOR
STRESS-TOLERANT LANDSCAPE PLANTS

by Mark P. Widriechner

Abstract. This paper reviews briefly the climatic and edaphic
factors related to tree adaptation. Photoperiod regimens, the
timing and severity of low temperatures, and hightemperature-
moisture interactions all are important climatic determinants of
adaptation forwhich adequate data have been widely recorded.
Edaphic factors that injure trees in managed environments are
more difficult to extrapolate to natural systems, but natural
soils that are poorly drained, calcareous, alkaline, or saline
may be initial foci for seeking tough trees. A project to identify
promising new landscape plants for the north-central United
States, by examining climatic, edaphic, and floristic factors in
Eastern Europe, is presented as a case study.

Index Words. climate, soil, plant introduction, evaluation,
Eastern Europe, north-central United States

in the search for tough trees that thrive in
stressful environments, much of our attention
should be directed toward tree populations in
nature. By analyzing the selective pressures un-
der which natural tree populations have evolved,
potentially valuable germplasm can be identified
for horticultural evaluation. Evaluation data may
lead to superior germplasm that can be directly
introduced into the trade, or, more likely, can help
identify populations valuable for selection and
breeding programs.

Many stresses faced by trees are complex
functions of the local growing conditions and,
accordingly, serve as selective pressures driving
local adaptation, for populations unadapted to
such stresses willbe injureddirectly (e.g., extreme
low temperature or drought injury) or indirectly by
their predisposition to infestation by pathogens
and other pests (17,38,39). Our goal should be to
minimize injuries and mortality in nurseries and
managed landscapes, thereby reducing produc-
tion, maintenance, and replacement costs. As
tree maintenance budgets tighten, interestin such
low-input landscapes continues to grow (47).

How can we simplify and quantify the complex
environmental relationships leading to adaptation
ortoinjury, and thereby focus our search for tough

trees? Ideally, such quantification would empha-
size environmental factors that are predictable by
existing records and are correlated with stresses
analogous to those faced by trees under managed
conditions.

Environmental factors with the broadest appli-
cation to tree adaptation are functions of local
climates and soils. The quantity, quality, and timing
of light, moisture, and heat potentially available to
trees are climatic functions, whereas the availability
of moisture and nutrients is greatly influenced by
soil characteristics. Of course, edaphic and climatic
effects are not clearly separable, because climate
and vegetation continually interact with the parent
material to produce soil (5).

Climatic factors

We can begin simplifying complex environ-
mentai relationships by examining various climatic
and edaphic features in light of previous research
on woody plant adaptation. Since trees have
extended juvenile periods, the evolution of climatic
adaptation of tree populations in nature is affected
both by long-term, seasonal climatic cycles that
are, to varying degrees, predictable and by the
frequency and severity of relatively infrequent,
extreme conditions, which may be impossible to
predict without extensive data.

The annual photoperiod regimen, a direct
function of latitude, is one of the most predictable
climatic features. The photoperiod regimen may
serve as a phenological signal to trees and shrubs
forthe induction of vegetative growth and flowering
(22) and subsequent cessation of growth leading
to autumnal cold hardening (16). [These phe-
nomena are reviewed in detail by Salisbury (36).]
Cultivation of natural popuiations for evaluation or
direct use in latitudes significantly removed from
their provenance often interferes with evolved
phenological patterns, resulting in poor growth
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and winter injury (25,30). Attempts to cultivate
natural tree populations that overlook a
provenance’s latitude risk failure.

Lowwintertemperatures predicted from medium
to long-term (20-100 year) records are widely
used to relate tree adaptation to low-temperature
injury (14). The most common measure, mean
annual minimum temperature, serves as the basis
of important hardiness zone maps for North
America (6, 34) and for Europe (14). Other studies
have evaluated January mean temperatures in
comparison with mean annual minimum tem-
perature to predict the survival of selected woody
plants in the north-central United States (50) or
incorporated the monthly mean of daily minimum
temperatures of the coldest month (MMDM) into
multiple regression equations and maps for gen-
eral woody plant adaptation in Canada (28, 29).
The MMDM also was the climatic statistic that was
most congruent with boundaries of forest plant
communities in Florida (13).

Extreme low temperatures may be at least as
important as mean low temperatures in causing
injury. Temperatures below -40°C disrupt a com-
mon physiological adaptation, winter survival
through freezing avoidance produced by free water
supercooling in xylemtissue (33} and overwintering
buds (35). In plant tissues, supercooling fails at or
slightly above -40°C, the spontaneous nucleation
point of supercooled water. The frequency of such
extreme events has been correlated with the
northern limits of the natural ranges of many trees
in North America (12,35). Some genera, such as
Prunus (33), include both species that rely on
supercooling and others with poorly understood
mechanisms that allow survival below -40°C.

Photoperiod reduction, decreasing autumn
temperatures, and the physiological status of the
plant can interact to acclimate woody plants to
winter conditions (11). Record low temperatures
during the normal acclimation period producing
massive tree mortality have been well documented
in trade literature (2,43). Such losses can be
characterized by monitoring changes in low-
temperature tolerance during the autumn and
early winter in relation to on-site temperature data
(26).

Whereas the timing and severity of low tem-
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peratures are limiting factors in the northern distri-
bution of woody plants in North America, the
limiting role of insufficient warmth during the
growing season in Scandinavia has been well
documented (40). The effects of insufficient warmth
on plant distribution can be observed both on
vegetative growth and development, and onsexual
reproduction [see especially the works of Pigott
and Huntley (31,32) on Tilia cordata). These ef-
fects are not limited to Scandinavia, but also occur
at other northern or montane sites. Ouellet and
Sherk (28) reported that the mean frost-free pe-
riod and the mean daily maximum temperature of
the warmest month were statistically significant
factors in multiple regression analyses of the
relationship between climatic factors and woody
plant adaptation across Canada. In contrast, my
colleagues and | (50) found no significant effects
of July mean temperatures on the survival of
woody plants from Yugoslavia in the north-central
United States.

Extremely high summer temperatures also in-
duce stress, either directly 1o species that have
evolved in alpine or otherwise cool conditions (9)
or, indirectly, in concert with low relative humidi-
ties (23) or inadequate soil moisture, producing
drought injury. A broad range of mathematical
formulas has been proposed (7) for estimating the
potential of temperature, moisture, and other
factors, such as wind and insolation, to effect
transpiration and thus to induce possible stress.
These measures are generally known as potential
evapotranspiration (PE).

Long-term moisture deficits and surpluses can
be analyzed by comparing PE with mean annual
precipitation. One method of expressing the bal-
ance between PE and precipitation, Mather and
Yoshioka’s (24) moisture index, has helped pre-
dict the distribution of plant communities (24) and
is a statistically significant variable, along with
January mean temperatures, in predicting the
survival of woody plants from Yugoslavia at test
sites in the north-central United States (50).

Mean monthly or seasonal precipitation records
have also been analyzed in conjunction with
temperature data to predict woody plant survival
in Canada (28) and the distribution of naturai plant
communities in North America (21,41). The rela-
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tionship of woody plant adaptation to precipitation
extremes producing serious droughts or floods
has not been studied systematically, except for
specific phenomena, such as relationships be-
tween leaf abscission and drought (1). Drought
severity can be quantified with the Palmer Drought
Severity Index or with Palmer’s Z-Index (18), but
no reports where these indices are compared with
plant distribution have been found. However,
Borchert's (4) classic study of climatic factors
corresponding to the distribution of grassland
vegetation in the Great Plains and Midwest de-
scribed interesting relationships between plant
communities and patterns of July precipitation
and temperature in drought years. His findings
suggest that variability in the balance between PE
and precipitation may be as important as is the
overall balance. The effects of abnormally high
precipitation are problematic, depending on the
physiological status of the plant (winter floods vs.
summer floods), and on drainage and other soil
conditions that can influence root distribution (20).

Clearly, the photoperiod regimen, low tempera-
tures, and interaction of high temperatures and
moisture are all important determinants of woody
plant adaptation. As we consider these factors in
our search for tough trees, we would be wise to
base our search on actual conditions faced by
plants in our target environments (pre-identified
managed landscapes), which may differ widely
from conditions recorded at nearby weather sta-
tions (46), and on plant performance data previ-
ously collected under these or similar environ-
ments.

Edaphic Factors

Soils of managed landscapes, especially those
in urban areas, have been greatly modified by
human activity and.often bear little resemblance
to nearby undisturbed soils (8,47). Human dis-
turbance creates soils that may be saline from
deicing salts, alkaline from irrigation, calcareous
from discarded construction materials, or com-
pacted by construction machinery or other traffic.
Finally, natural soil profiles are often disrupted
when topsoil is removed before new construction.
Thesedisturbances produce soils with low oxygen-
holding capacities and chemical compositions
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unlike those commonly found in natural forest
soils (3,8,42,45).

Although direct analogs to human-disturbed
soils may be rare in nature, the processes of
alkalization, calcification, salinization, and hard-
ening all can occur during soil genesis (5) and are
associated with particular soil types. When ap-
propriate soil types are identified and detailed
maps are available, it may be possible to employ
this information to focus the search for tough
trees, as has been proposed by Ware (45).

In the absence of detailed soil maps, knowl-
edge of topographic and general landscape fea-
tures [such as karsts {dissected limestone near
the surface), extensive flood plains, or salt flats]
can help focus the search. Certain plant groups
are also indicators of soil drainage or chemistry:
willows (Salix spp.) prefer poorly drained, sea-
sonally flocded soils and deciduous azaleas
(Rhododendron spp.) prefer nutrient-poor, acidic
soils. Detailed distribution information for such
indicator species may partly substitute for direct
soil mapping data.

Case Study

With this very long “preface” complete, | will
now describe an ongoing effort to locate and
acquire potentially useful trees and shrubs native
to Eastern Europe, for testing in the north-central
United States. This project began in a rather
unsystematic fashion in the mid-1970s, with the
introduction to the United States of adiverse set of
woody plant populations from the former nation of
Yugoslavia (50). Many of these populations were
evaluated at sites throughout the north-central
United States as part of the NC-7 Regional Or-
namental Trials, a long-term project to evaluate
new landscape plants and to increase the future
diversity of well-adapted plants foundincommerce
(48).

The 10-year evaluation results of Yugoslavian
landscape plants indicated that only about a third
of the populations survived and generally per-
formed well throughout the north-central United
States, another third failed at the colder or drier
sites, and the remaining third failed at all sites
(50). Statistically significant multiple-regression
models, based on low winter temperatures and
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Table 1. Criteria for future exploration for woody
landscape plants in Eastern Europe [from (50)].

1. January mean temperatures < -5°C
2. Moderate, annual moisture deficits
3. July mean temperatures = 18°C

4. Elevations < 1000 meters

moisture conditions at test sites, explained 84% of
variation for first-year survival and 56% of varia-
tion for overall survival across all sites (50). From
these results and an analysis of climatic conditions
in the former nation of Yugoslavia, my colleagues
and | (50) developed a set of four criteria (Table 1)
for locating Eastern European sites with environ-
ments more closely analogous to those found in
the north-central United States.

These criteria are now being employed to focus
future plant acquisition in Eastern Europe. First, it
was necessary to analyze climatic and topographic
data to determine which sites, if any, met the four
criteria. | found that much of central and northern
Ukraine, and adjacent portions of Belarus, the
Russian Federation, and Moldova, along with two
small areas in the foothills of the southern
Carpathian Mountains in central Romania met all
criteria (49). A literature review of natural plant
communities was then performed to ensure that
the criteria did not identify grassland sites lacking
useful woody plants. Patterns of piant communi-
ties in these regions of Eastern Europe include
mixed and deciduous woodlands, grasslands, and
transitional communities similar to those found in
Minnesota and Wisconsin (49).

It has not yet been possible to find soil maps for
the Eastern European regions, and fine-scale
vegetation maps are only now being prepared for
publication (27). Thus, current efforts are focusing
on developing contacts with botanical gardens in
these regions known to collect and share seeds
from natural populations (15) and identifying
promising species. Nineteen botanical gradens
have been identified for contact in the near future.
And relevant floras (10,19,37,44) have been
consulted to develop a comprehensive list of
woody plants native to the region. This compre-
hensive list, along with habitat descriptions, aids
our effort to identify promising species in three
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Table 2. Selected trees and shrubs from Eastern

Commonly cultivated species for which superior eco-
types are desired:

Acer campestre and platanoides

Carpinus betulus

Cornus mas

Euonymus europaeus

Fraxinus excelsior

Ligustrum vulgare

Tilia cordata
Indicator species for calcareous soils (C) and poor
drainage (D):

Acer pseudoplatanus (C)

Alnus glutinosa and incana (D)

Corylus avellana (C)

Cotinus coggygria (C)

Cytisus podolicus (C)

Euonymus verrucosus (D)

Fraxinus excelsior (D)

Genista tinctoria (C)

Juniperus communis (C)

Populus alba and nigra (D)

Quercus pubescens (C)

Salix (many species) (D)

Ulmus laevis (D)

Taxonomically diverse plant groups:

Crataegus

Cytisus and related genera

Rosa

Salix
_ Thymus
ways.

First, the list is being checked for those Euro-
pean landscape plants that are commonly culti-
vated in our region, with an emphasis on those
that are poorly adapted to colder and drier areas,
such as the northern Great Plains. Collections
from Ukraine and surrounding areas, which meet
the climatic criteria, should be better adapted to
the harsher climates of the north-central United
States than are those from sites farther south or
west in Europe. Second, habitat information is
being checked for species that are potential indi-
cators for calcareous, alkaline, saline, and poorly
drained soils. Finally, the list gives some indica-
tion of patterns of genetic diversity as reflected in
species diversity withingenera. Genetically diverse
genera, although perhaps unsuitable for direct
introduction, may be particularly interesting sub-
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jects for future breeding and selection. A few
examples identified by these analytical methods
are listed in Table 2.

The true test of this program remains to be
conducted. How will plants identified in this fashion
perform at diverse sites in the north-central United
States? Perhaps we will discoverimportantlimiting
factors overlooked initially. Alternatively, we might
be too successful. Our network of trial site coop-
erators will be warned that these introductions
could be so well adapted that they might invade
natural plant communities; they should manage
these plants accordingly. We hope to begin ac-
quiring and evaluating these plants during the
next few years and ultimately find a broad array of
tough new trees and shrubs.
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Résumé. Cet article résume de fagon bréve les facteurs
climatigues et édaphigues reliés a I'adaptabilité des arbres.
Les régimes de photopériode, la période et la sévérité des
températures basses, et les interactions entre ies hautes
températures et I'humidité représentent tous des facteurs
climatigues importants qui sontdéterminant pour I'adaptabilité
et pour lesquels des données adéquates ont été largement
consignées. Les facteurs édaphiques qui affaiblissent les
arbres en milieu aménagé sont plus difficiles a extrapoler des
systémes naturels, mais les sols naturels qui sont mals drainés,
calcaires, alcalins ou salins peuvent étre initialement visés
pour rechercher les arbres plus résistants. Un projet pour
identifier de nouveaux végétaux prometteurs dans le domaine
de I'aménagement paysager pour le Centre-Nord des Ftats-
Unis au moyen d’'un examen des facteurs floristiques,
climatiques et édaphiques propres a I'Est de I'Europe est
présenté comme cas d'étude.

Zusammenfassung. Diese studie gibt einen kurzen
Uberblick iber die klimatischen und bodenbedingten Faktoren
bezuglich der Baumadaption. Die Photoperiode, die Dauer
und Strenge von tiefen Temperaturen und die interaktionen
zwischen hoher Temperatur und Feuchtigkeit sind alle wichtige
klimatische Determinanten der Anpassung, flr die
entsprechende Daten weitldufig erhoben wurden.
Bodenbedingte Faktoren, die in einem bewirtschafteten Umfeld
Baume verletzen, sind schwieriger zu mutmaBen als in einem
natlrlichen System, aber natiirliche, gewachsene Béden die
eine geringe Durchldssigkeit haben, kalkreich, basisch oder
salzig sind, moglicherweise erste Anhaltpunkte bei der Suche
nach widerstandsféhlgen Baumen sein. In einer Fallstudie ist
ein Projekt dargestelit, welches vielversprechende neue
Pflanzen fir Landschaften im Norden und Zentrum der
Vereinigsten Staaten anhand der Untersuchungen von
klimatischen, edaphischen und floristischen Faktoren in
Osteuropa, identifizieren soll.



