blessures de coupes conventionnelles étaient de 30 à 50 pourcent plus larges que les blessures de coupes Shigo. Il y avait peu de cicatrisation des blessures Shigo durant la première année. Après quatre ans, les blessures conventionnelles étaient plus petites que les blessures Shigo sur six espèces, de dimensions approximativement semblables sur une espèce et plus larges sur trois espèces.

Zusammenfassung: Äste von 10 verschiedenen Baumsorten wurden mit dem "Shigo" und den üblichen Methoden ausgelaubt. Die Äste (vier per Baum, fünf Bäume per Sorte) waren durchschnittlich 50 bis 75 mm im Durchmesser. Die Wunden von den üblichen Schnitten waren 30 bis 50 Prozent

Center for Biodiversity
Illinois Natural History Survey
607 East Peabody Drive
Champaign, IL 61820

PHYTOTOXICITY OF SUNSPRAY ULTRA-FINE SPRAY OILR AND SAFER INSECTICIDAL CONCENTRATER SOAP ON SELECTED ORNAMENTAL PLANTS IN SUMMER IN NORTH FLORIDA AND SOUTH GEORGIA

by Russell F. Mizell, III1

Abstract. Two percent Sunspray Ultra-fine SprayR oil and Safer Insecticidal ConcentrateR soap were applied 5 times in separate treatments to 30 species of trees and shrubs growing in containers under commercial nursery conditions in north Florida. A similar test was conducted on 17 species of container-grown ornamentals in south Georgia. Horticultural oil and soap were applied at 10 day intervals beginning July 16, 1990. Plants were visually rated for phytotoxicity prior to the second through fifth application and 10 days after the fifth application. A third test of only three applications of horticultural oil or soap on 9 species of plants was conducted at Monticello, Florida beginning August 28, 1990. All the treatments were applied from 9:30 - 11:00 A.M. and daily temperatures were above 35\textdegree each day. No phytotoxicity was observed on any of the plants tested.

Environmental and sociological concerns that accompany the application of conventional pesticides for pest control have shifted research attention to the evaluation of alternative methods. Traditionally, horticultural oils have been recommended for use in the dormant season for insect and mite control on a variety of plant species. Phytotoxicity caused by the older, less refined brands of horticultural oils precluded their use during the active growing season. However, many

new, more refined horticultural oils and soaps reduce the risk of phytotoxicity. Thus they have much promise as effective alternatives to conventional pesticides, fitting well into integrated pest management programs that seek to reduce pesticide use (1, 2, 3).

Previous work in Maryland (2) and New York (1) discussed the results of both phytotoxicity and efficacy studies using Sunspray 6E horticultural oil under summer conditions. Discoloration was observed on 6 of 52 species tested (two species of maple, a juniper, a blue spruce, a red oak and an arborvitae) and the authors urged caution if 2% Sunspray oil was used repetitively on these plants (2). Excellent control of spider mites, scales, whiteflies, aphids, and mealybugs using 2-3% Sunspray 6E oil was documented in New York (1). Some phytotoxicity from 3% oil to several walnut (\textit{Juglans} sp.) cultivars and some apparently permanent foliage discoloration to several juniper cultivars were reported (1).

Repellency and toxicity of horticultural oil to

1 We thank David Walker of Wright Nursery, Cairo, GA and Fred Beshears and Rex Purvis of Simpson Nursery, Monticello, FL for providing the plants and a site to conduct these tests. Florida Agricultural Experiment Station Journal Series publication.
The foliage. No pests were observed on the plants in September. Evaluations were made on the spray applications were made between 9:30 and 11:00 A.M. on clear, sunny days. Daytime temperatures were typical of the season in south Georgia and north Florida reaching above 35 °C and above 65% relative humidity in the afternoon on all spray dates. Plants in experiments 1 and 2 were sprayed on 16 July, 27 July, 7 August, 17 August and 28 August. Plants in experiment 3 were sprayed on 28 August, 7 September and 17 September. Evaluations were made on the spray dates before the application of the treatments and 10 days after the last application date. Treated plants were observed and compared to untreated control plants for any changes in appearance of the foliage. No pests were observed on the plants.

Materials and Methods

Plants for the test were selected at random for uniformity of size and appearance from a large bed of similar plants. Plants in experiment 1 were located at a commercial nursery in Monticello, Florida. Three plants (replicates) from each cultivar in 2-3 gal. containers were grouped together for each of the 3 treatments: untreated control, 2% Sunspray Ultra-fine Spray oil, and 2% Safer Insecticidal Concentrate soap. Plants in experiment 2 were located at a commercial nursery in Cairo, Georgia. Plants normally grown under shade conditions (i.e. aucuba, camellia and azalea) were held under shade during the test. The Georgia plants were in 1 gal. containers. Plants in experiment 3 were tested at the author’s laboratory in Monticello, Florida. Plants in this test were in 1-2 gal. containers. All plants were held under commercial nursery conditions of overhead irrigation and fertilizer, etc. No cultural factors were added or changed during the course of the tests.

The oil and soap treatments were applied to plants with a Solo® backpack sprayer to runoff in a 2% solution at a volume of 100 gal. per acre. All applications were made between 9:30 and 11:00 A.M. on clear, sunny days. Daytime temperatures were typical of the season in south Georgia and north Florida reaching above 35°C and above 65% relative humidity in the afternoon on all spray dates. Plants in experiments 1 and 2 were sprayed on 16 July, 27 July, 7 August, 17 August and 28 August. Plants in experiment 3 were sprayed on 28 August, 7 September and 17 September. Evaluations were made on the spray dates before the application of the treatments and 10 days after the last application date. Treated plants were observed and compared to untreated control plants for any changes in appearance of the foliage. No pests were observed on the plants.

Table 1. List of plants sprayed with Sunspray Ultra-fine Spray® oil and Safer Insecticidal Concentrate® soap in three separate experiments in south Georgia and north Florida during July-September, 1990.

Experiment 1: Monticello, Florida

1. Malus domestica 'Anna', apple
2. Prunus persica 'Flordaking', peach
3. Pyrus communis 'Flordahome', pear
4. Prunus salicina 'Methley', plum
5. Prunus avium 'Bing', (sweet) cherry
6. Ficus carica 'Brown Turkey', fig
7. Vitis hybrid 'Suwannee', bunch grape
8. Carya illinoinensis 'Stuart', pecan
9. Betula nigra, river birch
10. Prunus laurocerasus, cherry laurel
11. Pinus taeda, lobolly pine
12. Populus nigra, Lombardy poplar
13. Koelreuteria paniculata, Golden rain tree
14. Platanus occidentalis, American sycamore
15. Liriodendron tulipifera, tulip tree
16. Salix babylonica, Gold weeping willow
17. Malus sylvestris, floribunda crab apple
18. Taxodium distichum, bald cypress
19. Ginkgo biloba, ginko
20. Ilex x attenuata, fosteri holly
21. Acer rubrum, red maple
22. Quercus laurifolia, laurel oak
23. Quercus shumardii, shumard oak
24. Cercis canadensis, redbud
25. Magnolia x soulangiana, saucer magnolia
26. Hibiscus syriacus, purple althea
27. Spirea vanhouttei, Van houttei spirea
28. Photinia x fraseri, photinia
29. Hemerocallis sp., daylily
30. Lagerstroemia indica 'Tuscarora', crapemyrtle

Experiment 2: Cairo, Georgia

1. Rosa sp. 'Bonica', Mediland rose
2. Weigela florida, Florida weigelia
3. Buxus microphylla, boxwood
4. Raphiolepis indica 'Clara', Indian hawthorne
5. Juniperus squamata 'Parsoni', juniper
6. Buddleia davidii, buddleia
7. Ilex crenata 'Hetzii', holly
8. Spirea japonica 'Shiro Bana' spirea
9. Ilex x meserveae 'Blue Prince', holly
10. Hemerocallis sp. 'Red Supreme' daylily
11. Forsythia x intermedia 'Bronynesia' forsythia
12. Aucuba japonica, aucuba
13. Euonymous marginata, euonymous
14. Rhododendron sp. 'Silver Sword', azalea
15. Camellia japonica, camellia
16. Juniperus stricta 'Excelsior Stricta', juniper
17. Juniperus chinensis 'Torulosa', juniper

Experiment 3: Monticello, Florida

1. Buxus microphylla, boxwood
2. Rhododendron sp. 'Mother's Day', azalea
3. Juniperus chinensis 'San Jose', juniper
4. Juniperus horizontalis 'Prince-of-Wales', juniper
5. Juniperus chinensis 'Procumbens Nana', juniper
6. Ilex vomitoria 'Schelling's Dwarf', vomitoria holly
7. Pyracantha koidzumii 'Mohave', pyracantha
8. Ligustrum x vicaryi 'Vicary', ligustrum
9. Euonymous japonica 'Aureo marginata', euonymous
Results and Discussion

Table 1 lists the cultivars tested in the 3 experiments. No phytotoxicity was observed on any of the plants from the repetitive oil or soap treatments. Aucuba sprayed with oil did yellow slightly after the third application. However, the change in appearance was not enough to affect the salable quality. In experiment 2, the three 1 gal. boxwood plants treated with oil died during the test. Foliage symptoms indicated that apparently this resulted from a root disease and not the oil. Boxwoods in 2 gal. containers were tested again in experiment 3 and phytotoxicity was not observed. No change was observed in the color of the juniper cultivars tested. However, changes in juniper color often do not show up until cool weather in the deep South and this problem needs further consideration. Previous work reported discoloration of some juniper cultivars (2).

It can be concluded from this test and the literature (1, 2) that the more refined horticultural oils can be safely used in the summer season in the eastern U.S. without general problems of phytotoxicity. Because of the large numbers of species and cultivars of plants grown in southern nurseries it will be impossible to rigorously test them all. No doubt some plants are sensitive to the oils and perhaps soaps and growers should spray a few plants of suspected sensitive species before applications to large numbers of plants.

Phytotoxicity may be enhanced on plants that are under conditions of stress; although tests with horticultural oil on drought stressed plants indicated phytotoxicity to only a few cultivars (1, 2). The application of adequate irrigation to plants before treatment with horticultural oil is highly recommended. The risk of phytotoxicity from horticultural oil may be higher to plants that have not yet hardened off during days in the fall when drastic changes in daily temperature often occur in the deep South.

Literature Cited

Associate Professor of Entomology
Agricultural Research and Education Center
University of Florida
Rt. 4, Box 4092
Monticello, Florida 32344
