3. Many named communities may have no separate postal code number or no separate town government, yet they appear on maps and bear tree names.

This article, then, is an appeal for input from ISA members. You know your state. Which of your towns have names of trees (English or any other language, especially in languages of Indian tribes in your area)? Please send your information to: F.W. Holmes, 24 Berkshire Terrace, Amherst, Massachusetts 01002. And, if you would like my two lists for your state, send a #10 envelope bearing your name and address, plus $1.00 (for postage and photocopying).

Director, Shade Tree Laboratories
University of Massachusetts
Amherst, Massachusetts 01003

INDICES TO THIRTEEN YEARS OF ISA RESEARCH GRANTS

by Francis W. Holmes

The Memorial Research Trust of the International Society of Arboriculture supports research on tree care with grants. The projects are prioritized by a research committee of the ISA and selected by the trustees of the Memorial Research Trust. A major component in the selection procedure is the usefulness of the obtained data to the arborist. The Trust through 1987 had distributed funds to 132 projects. These cover a wide range of subjects and have been distributed to several states, provinces, institutions and scientists. The four indices that follow will illustrate the scope and distribution.

The number in the index that follows the subject or name refers to the number of the grant. These are listed in your 1987 ISA Yearbook beginning on page 27. Please refer to this yearbook for a more complete understanding of these indices.

SUBJECT INDEX

Acclimatizing trees 53
Adapting to land-fill gas... 53
...role of mycorrhiza 114
Adaptability to poorly aerated soils 50
Air pollution 7, 35
Anatomical effects 45
Anti-viral compounds 44
Arborist practices (I.P.M.) 71
Apple scab control 100
Apple tree borer, flat-headed... 111
...control of 111
Arid environment 110
Armillaria mellea... 97
...rhizomorph development 97
Ash, remedy for chlorosis 98
Austrian pine, improvement of 90
Backfill effects on roots 46
Bacteria, xylem-related (oak scorch) 75
Bagworm populations 65
Bark-beetles (elm) 79
...attracted by pruning on wrong date 104
...feeding on elms 73
Barrier zones (re vascular comium) 73
Baskets, wire, effects on tree growth 113
Benefits of trees 7
Benomyl 2
Biochemical effects 45
Biological controls 61, 66
Birch 31, 34
Birch, paper 46
...defoliation stress vs. borers 123
...nutrient stress vs. borers 123
...resistance to bronze birch borer 123
Borers 31, 34, 42
...apple flat-headed, in maple, control1 11
...brunt birch, resistance in paper 123
...birch 123
...entomogenous nematodes against 129
...oaks 130
Branch dieback, of dogwood 69
Bursaphelenchus lignicolus 51
Cambium, vascular (re barrier zones) 73
Canker, Thyronecotta, of honeylocust 78
...from high temperature under summer
...wrap 108
Canopy radius, to predict root spread 127
Carbohydrate reserves
...tree vigor & borer attack prediction 130
Ceratocystis ulmi 79, 102
Chloropirip...as systemic fungicide in elm 92
Chlorosis 57
...of ornamental ash, remedy for 98
...of pin oak, iron sulfate treatment 85
Choice, characteristics, suitability...
...for landscaping 16, 20, 21, 25, 35, 38
...for storm-resistance 72
...for street trees 40
Clones...
...of honeylocust, vs. mimosa
...webworm 88
Control—see Disease...
...Insect...
Compaction of soil, how to reduce 82
Computer system (diagnosis) 55
Conductance, hydraulic, of roots 132
Conifers 60
Conorius florid...branch dieback of 69
...response to moisture stress 77
Cornus nortall, anthracnose of 52
Crown of tree, water stress 121
Cryptophyllum sp. 66
Curriculum for safety training, ...arborists 107
Cytopora 15, 27
Dates for pruning elms 104
Decay...37, 54
...barrier zones against 73
...control by injected fumigants 67
...(heartwood) external indicators 68
Decline 29, 41, 62
Deficiencies 13, 24, 48
Defoliation 12
...of birch, paper: re borer resistance 123
...of oak, red: re physiology 122
Deterioration 54
Diagnosis 55
Dieback:
...of dogwood 69
...of oak 74
Disease control 43, 44, 52, 54, 56, 62
Dogwood, Pacific...
...anthracnose, etiology & control 52
Dogwood, Flowering...
...branch dieback, etiology & control 69
...moisture stress 77
Dormant pruning 63, 84
Drought
...intolerance in seedlings 112
...-tolerant rootstocks 83
Dutch elm disease 2, 79
...resistance toward 102
Education, to prevent construction 117
...damage 117
Electricity 3
Elim 2, 79
...American, resistance to 102
...DED & EPN 102
...chloropirip in: systemic fungicide 92
...leaf beetles nutrition, re density 101
...pruning of, re bark beetle attraction 104
...resistant to DED and EPN 102
...Siberian, elm leaf beetle on 101
Environment 34
...arid 110
...street tree- 106
...urban 106
...urban, re root pathogens 116
Epidemiology 41, 43, 56
...of oak dieback 74
Ethane 39
Etymology 41, 52
...of dogwood branch dieback 69
Fertilizer...
...type & level, re Verticillium wilt 125
...verticillium wilt infection 13, 23, 28
Fill (backfill) 46
Frangipani soil...
...tree roots, after vertical mulching 120
Fungi, fungal diseases 2, 6, 11, 15, 24
Fungicides 2, 6
...for disease prevention on shade
...trees 103
...systemic, chloropirip as, in elm 92
...gas, landfill; role of mycorrhizae 114
...girdling 19, 22
...girth, to predict root spread 127
...greeenspire linden 64
Growth 9, 16, 19, 23, 30
...acceleration by mycorrhizae 78
...regulators 49
...retardants, evaluation of new 115
...street-tree, per site factors 106
...transplanting success influenced 116
...by 126
...water-stress influence on 121
...wire-basket influence on 113, 124
Gypsy moth 66
Herbicides 4, 19, 58
Herbicidal-treated soils...
...barriers to exclude roots 95
...herbivore performance...
...on red oak: water deficit & defoliation 122
...honeylocust 43
...clones, vs. mimosa webworm 88
...Thyronecotta canker of 76
...moisture stress of 76
...pod-gall midge 86
Hormones 49
Hydraulic conductance, of roots 132
...identification of
...root pathogens 116
...indicators...
...external (of heartwood decay) 68
...injection 1, 24, 67
...of iron sulfate into pin oaks 85
...spile design 96
Insecticides 26, 31
Insects, insect pests 24, 26, 31, 32
...initial occurrence of (phenology) 87
...seasonal development of
...(phenology) 99
Integrated pest management, arborists 71
IPM 71, 100
Iron deficiency 13, 57
...iron sulfate injection to control 85
...resistance to 119
Landfill gas...
...role of mycorrhizae in adapting to 114
...landscaping, new trees for 81
Light effects 9
Lilac borer 61
Linden, Greenspire 64
Locust, Honey- (see Honeylocust) 71
Lymantria dispar 66
Management 4, 5
...program, root-system development...
in 118
Manganese deficiency 48
Maple(s) 29, 41, 48
...nursery-grown, borer host/stress...
...relation 111
Maple, Norway...
...rootstock resistant to Verticillium 128
Maple, sugar...
...salt injury & microbial ecology of 91
Methods 1, 13, 24
Microbial ecology...
...of salt-injured sugar maples 91
...midge, pod-gall, of honeylocust 86
Mimosa webworm, on honeylocust 88
Miticides 26
Moisture [see also Water(ing)]
...moisture...
...demands in arid environment 110
...stress of flowering dogwood 77
...stress of honeylocust
...(re Thyronecotta) 76
Mulching, vertical, in frangipani soils 120
Mulches, common types, re tree...
establishment 131
Myccorrhizae 47, 78
...role in adaptation to landfill gas 114
Mycoplastm, resistance to 102
Nematode(s), entomogenous 81
...effectiveness vs. tree-boring
...insects 129
Nematode(s), pinewood 51
Neoplectana carpopuscasps 61
Neoplectana biblonis 61
Nitrogen 28, 36
Nursery practices 12, 16
Nutrient stress...
in birch, paper: re bronze birch 123
...borer 123
Nutrition 13, 23, 24, 28, 36
Oak 32
...carbohydrate reserve, re vigor 130
...dieback, epidemiology & control 74
...scorch, xylem-limited bacteria 75
...two-lined chestnut borer attacks 130
Oak, pin... 119
...iron chlorosis resistance 119
...iron chlorosis treatment 85
Oak, red... 119
...physiology, water deficit, ...defoliation 122
Oil sprays 26
Ozone tolerance 35, 93
Pavement, roots vs. herbicides under 95
Pecan 21
Pest management, bagworm... 65
Phenology...
...re insect initial occurrence 87
...re insect seasonal development 99
Philocoe necrosis disease of elm 102
Phosphorus 28
Physiology 3, 22
...red oak: water deficiency & ...defoliation 122
Phytophthora: on sugar maple 56
Phytotoxicity 26
Pine oak...
...iron chlorosis resistance in 119
...iron chlorosis treatment of 85
Pine, Austrian 90
Pine, white...
...decline of 62
...ozone-tolerant seedlings of 93
Pinewood nematode 51
Pinus nigra 51
Pinus strobus 62
Pollution, air-
7, 35
Pollution, soil-
10
Populations...
...pest 32
...of mimosa webworm on honeylocust 88
Potassium 28
Predicting...
...root spread from girth & canopy 127
Propagation 14
...of elms resistant to DED and EPN 102
Pruning
...bark beetle attraction to wounds 104
...dates, re elm bark beetle attraction 104
...dormant, re transplanting 63
...dormant, re later shoot-root ratios 84
...self...
...resistance ...
10, 34, 58, 60
...to bronze birch borer, by paper
...bark... 123
...to drought, by rootstocks 83
...to iron chlorosis, by pin oaks 119
...to soil temperature alteration 94
...to storms, selection for 72
...to Verticillium wilt, by Norway
...maple 128
Rhizomorphs, of Armillaria mellea 97
Root ball size and shape...
...re transplanting survival 89
Root(s)
22, 23, 30, 33
...bare- (growth after planting) 63
...barriers to restrict growth of 85
...growth 47
...growth into herbicide-treated soils 95
...hydraulic conductance 132
...in poorly aerated soils 50
...pathogens, identification &... control of 116
...penetration 46
...potential after summer... transplanting 109
...proliferation after vertical mulching 120
...spread predicted by girth & canopy 127
...system development 118
...Norway maple, resistant to...
...Verticillum 128
...tolerant to drought 83
Safety training curriculum 107
Salt injury 10, 60
...re sugar maple microbial ecology 91
Scale insects 32
...damage by, re plant stress 70
Schorch:
...of oak, re xylem-limited bacteria 75
Selection (tree) 16, 20, 21, 25, 58, 60
...criteria for, ozone tolerance 92
...elms resistant to DED and EPN 102
...for tolerance to altered soil temp 94
Selection...
...[see also Choice]
Siberian elm, leaf beetle on 101
Smothering 50
Soil compaction...
...effects on roots 47
...methods to reduce 82
Soil conditions, Mn deficiency 48
Soil scoring, effects on roots 46
Soil temperature alteration, tolerance 94
Soils...
...frangipani, vertical mulching for 120
...poorly aerated 50
Spiles, design for chemical injection 96
Spraying
4, 6, 12, 28
...single application vs. apple scab 100
Spruce 15, 27
Storage 12
Storm resistance, selection for 72
Street trees (container), water for 80
...site environment of, re growth &... survival 106
Stem diameter, to predict root spread 127
Stress
3, 8, 11, 27, 39
...amelioration...
...by mycorrhizal symbiosis 78
Stress, moisture...
...of flowering dogwood 77
...of honeylocust, re Thryonecchia 76
Stress, plant...
...effect on borsers and maple-tree...
...hosts 111
...effect on scale insect damage 70
...effect on scale insect damage 70
Stress, water: relation to growth 121
Sugar maples, salt injury to 91
Summer transplanting/nursery, re root
...growth 109
Survey 5, 38
Survival of trees in street sites 106
Sweetgum 11
Sycamore, selection of 25
Symbiosis, mycorrhizal (re growth) 78
Temperature...
...cambial, re summer wraps &... damage 108
...soil, tolerance to alteration 94
Thryonecchia 43
...canker of honeylocust 76
...moisture stress effect upon 76
Tolerance...
...[see Resistance]
Training curriculum for safety 107
Transplanting...
...after urban acclimatization 53
...back-fill & soil scoring effect on 46
...bare-root vs. tree-spade 18
...chemical defoliation re survival in 12
...dormant-pruning influence on 63, 84
...Greenspire linden 64
...growth regulators and 49
...growth/water relations re success 126
...harvest date, nitrogen, moisture re 36
...mulch effects on establishment of...
trees 131
...recovery rates, small vs. large...
trees 105
...root-ball size & shape, effect on 89
...root regeneration after 33
...shock-reduction in 59, 78
...survival, urban factors 8
...survival rates of 184 species 40
...tree mortality, re transplanting 102
...Ulmus pumila 92
...selection, to resist DED & EPN 102
...Urban environment 53
...Urban soils 47
...Urban tree survival, factors 8
...Vector(s): of nematodes 51
...Vimentillium dahiae 28
...Vimentillium wilt...
...effects of fertilizer type & level 125
...resistance in Norwegian maple
...rootstock 128
Virus 44
Water 17, 36
...deficit, influence on red oak 122
...requirements by container trees 80
...stress in tree crown, re growth 121
...stress re transplanting success 126
...use efficiency in seedlings
...[re drought] 112
Webworm, mimosa...
...populations on honeylocust 88
Weed control 4, 19, 58
White pine 62
...ozone tolerant seedlings of 93
Wire baskets, effect on tree
...growth 113, 124
Wounding 1, 45
Wound treatment(s) 37
Wraps, summer, re cambial
...temperature 108
Xanthogaleruca luteola 101
...Xylem-limited bacteria, oak scorch 75
Zinc deficiency 24
Zones, barrier, re vascular cambium 73
LOCATION INDEX

STATE or TERRITORY (U.S.A)

<table>
<thead>
<tr>
<th>State/Territory</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>77</td>
</tr>
<tr>
<td>Alaska</td>
<td>62</td>
</tr>
<tr>
<td>Arizona</td>
<td>52</td>
</tr>
<tr>
<td>Arkansas</td>
<td>101</td>
</tr>
<tr>
<td>California</td>
<td>106</td>
</tr>
<tr>
<td>Colorado</td>
<td>103</td>
</tr>
<tr>
<td>Connecticut</td>
<td>1</td>
</tr>
<tr>
<td>Delaware</td>
<td></td>
</tr>
<tr>
<td>District of Columbia</td>
<td>45</td>
</tr>
<tr>
<td>Florida</td>
<td>127</td>
</tr>
<tr>
<td>Georgia</td>
<td>126</td>
</tr>
<tr>
<td>Hawaii</td>
<td>8</td>
</tr>
<tr>
<td>Idaho</td>
<td>98</td>
</tr>
<tr>
<td>Illinois</td>
<td>131</td>
</tr>
<tr>
<td>Indiana</td>
<td>132</td>
</tr>
<tr>
<td>Iowa</td>
<td></td>
</tr>
<tr>
<td>Kansas</td>
<td>119</td>
</tr>
<tr>
<td>Kentucky</td>
<td>130</td>
</tr>
<tr>
<td>Louisiana</td>
<td>51</td>
</tr>
<tr>
<td>Maine</td>
<td>73</td>
</tr>
<tr>
<td>Maryland</td>
<td>97</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>102</td>
</tr>
<tr>
<td>Michigan</td>
<td>123</td>
</tr>
<tr>
<td>Minnesota</td>
<td>104</td>
</tr>
<tr>
<td>Mississippi</td>
<td>--</td>
</tr>
<tr>
<td>Missouri</td>
<td>125</td>
</tr>
<tr>
<td>Montana</td>
<td>126</td>
</tr>
<tr>
<td>Nebraska</td>
<td>113</td>
</tr>
<tr>
<td>Nevada</td>
<td>117</td>
</tr>
<tr>
<td>New Hampshire</td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>114</td>
</tr>
<tr>
<td>New Mexico</td>
<td>98</td>
</tr>
<tr>
<td>New York</td>
<td>83</td>
</tr>
<tr>
<td>Ohio</td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>8</td>
</tr>
<tr>
<td>Oregon</td>
<td>128</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>87</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>129</td>
</tr>
<tr>
<td>Rhode Island</td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td></td>
</tr>
<tr>
<td>South Dakota</td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td>59</td>
</tr>
<tr>
<td>Texas</td>
<td>115</td>
</tr>
<tr>
<td>Utah</td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>91</td>
</tr>
<tr>
<td>Virgin Islands</td>
<td>--</td>
</tr>
<tr>
<td>Virginia</td>
<td>62</td>
</tr>
<tr>
<td>Washington</td>
<td>36</td>
</tr>
<tr>
<td>West Virginia</td>
<td>52</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>41</td>
</tr>
<tr>
<td>Wyoming</td>
<td>--</td>
</tr>
<tr>
<td>CANADA</td>
<td></td>
</tr>
<tr>
<td>Alberta</td>
<td>--</td>
</tr>
<tr>
<td>British Columbia</td>
<td>81</td>
</tr>
<tr>
<td>Laborador</td>
<td>--</td>
</tr>
<tr>
<td>Manitoa</td>
<td>18</td>
</tr>
<tr>
<td>Newfoundland</td>
<td></td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>--</td>
</tr>
<tr>
<td>Quebec</td>
<td>92</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>--</td>
</tr>
<tr>
<td>England (U.K.)</td>
<td>79</td>
</tr>
<tr>
<td>Independent of Institution</td>
<td></td>
</tr>
</tbody>
</table>

INSTITUTION INDEX

<table>
<thead>
<tr>
<th>Institution Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice Holt Lodge (Surrey, England, UK)</td>
<td>79</td>
</tr>
<tr>
<td>Aurora University</td>
<td>76</td>
</tr>
<tr>
<td>Brigham Young University</td>
<td>115</td>
</tr>
<tr>
<td>Brooklyn Botanical Garden, Ossining</td>
<td>69</td>
</tr>
<tr>
<td>California Polytechnic State Univ.</td>
<td>58</td>
</tr>
<tr>
<td>Cary Arboretum</td>
<td>35</td>
</tr>
<tr>
<td>Colorado State University</td>
<td>103</td>
</tr>
<tr>
<td>Cornell University</td>
<td>16</td>
</tr>
<tr>
<td>Dickinson College (Carlisle, PA)</td>
<td>66</td>
</tr>
<tr>
<td>Dow Gardens (Midland, MI)</td>
<td>99</td>
</tr>
<tr>
<td>Forest Research Station (Surrey, UK)</td>
<td>79</td>
</tr>
<tr>
<td>Illinois Natural History Survey</td>
<td>27</td>
</tr>
<tr>
<td>Kansas State University</td>
<td>85</td>
</tr>
<tr>
<td>Iowa State University</td>
<td>119</td>
</tr>
<tr>
<td>Laval University (Sillery, Que)</td>
<td>92</td>
</tr>
<tr>
<td>Louisiana State University</td>
<td>118</td>
</tr>
<tr>
<td>Michigan State University</td>
<td>15</td>
</tr>
<tr>
<td>Morden (Man.) Research Station</td>
<td>18</td>
</tr>
<tr>
<td>Morris Arboretum</td>
<td>11</td>
</tr>
<tr>
<td>Morton Arboretum (Lisle, IL)</td>
<td>118</td>
</tr>
<tr>
<td>Ohio State University</td>
<td>98</td>
</tr>
<tr>
<td>Ohio State University: Columbus</td>
<td>105</td>
</tr>
<tr>
<td>Oklahoma State University</td>
<td>31</td>
</tr>
<tr>
<td>Oregon State University</td>
<td>123</td>
</tr>
<tr>
<td>Pennsylvania State University</td>
<td>20</td>
</tr>
<tr>
<td>Purdue University</td>
<td>108</td>
</tr>
<tr>
<td>Rutgers University</td>
<td>6</td>
</tr>
<tr>
<td>State University of New York (SUNY):</td>
<td>96</td>
</tr>
<tr>
<td>Texas A & M University</td>
<td>21</td>
</tr>
<tr>
<td>Texas Tech University</td>
<td>25</td>
</tr>
<tr>
<td>University of British Columbia</td>
<td>81</td>
</tr>
<tr>
<td>University of California</td>
<td>74</td>
</tr>
<tr>
<td>University of Maryland</td>
<td>97</td>
</tr>
<tr>
<td>University of Massachusetts</td>
<td>107</td>
</tr>
<tr>
<td>University of Minnesota:</td>
<td></td>
</tr>
<tr>
<td>...at St. Paul</td>
<td>17</td>
</tr>
<tr>
<td>...at Waseca (Tech. College)</td>
<td>71</td>
</tr>
<tr>
<td>University of Tennessee</td>
<td>14</td>
</tr>
<tr>
<td>University of Toronto</td>
<td>4</td>
</tr>
<tr>
<td>University of Vermont</td>
<td>39</td>
</tr>
<tr>
<td>University of Washington (Seattle)</td>
<td>36</td>
</tr>
<tr>
<td>University of Wisconsin</td>
<td>91</td>
</tr>
<tr>
<td>U.S. Department of Agriculture</td>
<td></td>
</tr>
<tr>
<td>...Agricultural Research Service:</td>
<td>128</td>
</tr>
<tr>
<td>...Corvallis (OR)</td>
<td></td>
</tr>
<tr>
<td>...Delaware (OH)</td>
<td>7</td>
</tr>
<tr>
<td>...Forest Service</td>
<td></td>
</tr>
<tr>
<td>...Durham (NH)</td>
<td>1</td>
</tr>
<tr>
<td>...Independent of Institution</td>
<td></td>
</tr>
<tr>
<td>...National Arboretum</td>
<td>45</td>
</tr>
<tr>
<td>Utah State University</td>
<td>110</td>
</tr>
<tr>
<td>Virginia Polytechnic Institute</td>
<td>62</td>
</tr>
<tr>
<td>Independent of Institution</td>
<td></td>
</tr>
<tr>
<td>Professional Tree Service, Bryan, TX</td>
<td>116</td>
</tr>
</tbody>
</table>
SCIENTIST INDEX

<table>
<thead>
<tr>
<th>SCIENTIST</th>
<th>INDEX</th>
<th>SCIENTIST</th>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrios, G N</td>
<td>44</td>
<td>Harris, M K</td>
<td>21</td>
</tr>
<tr>
<td>Andersen, J W</td>
<td>4, 5</td>
<td>Hart, E</td>
<td>88</td>
</tr>
<tr>
<td>Ascerno, M E</td>
<td>104</td>
<td>Hartman, J R</td>
<td>117</td>
</tr>
<tr>
<td>Baker, F A</td>
<td>110</td>
<td>Hermes, D A</td>
<td>99, 123</td>
</tr>
<tr>
<td>Baker, R</td>
<td>21</td>
<td>Hibben, C R</td>
<td>69</td>
</tr>
<tr>
<td>Ball, J J</td>
<td>71</td>
<td>Himelick, E B</td>
<td>43, 102</td>
</tr>
<tr>
<td>Bassuk, N L</td>
<td>53, 80, 83, 126</td>
<td>Hosil, J P</td>
<td>92</td>
</tr>
<tr>
<td>Blanchette, R A</td>
<td>37</td>
<td>Hudler, G W</td>
<td>22</td>
</tr>
<tr>
<td>Boe, A A</td>
<td>46</td>
<td>Jacobi, W R</td>
<td>76, 103</td>
</tr>
<tr>
<td>Brand, K M</td>
<td>125</td>
<td>Johnson, W T</td>
<td>26</td>
</tr>
<tr>
<td>Brennan, E</td>
<td>93</td>
<td>Joly, R J</td>
<td>109</td>
</tr>
<tr>
<td>Calabrese, D M</td>
<td>66</td>
<td>Kalisz, P J</td>
<td>120</td>
</tr>
<tr>
<td>Campana, R J</td>
<td>2</td>
<td>Karnosky, D F</td>
<td>35</td>
</tr>
<tr>
<td>Chang, C J</td>
<td>75</td>
<td>Kaya, H K</td>
<td>61</td>
</tr>
<tr>
<td>Clark, J A</td>
<td>36</td>
<td>Kleibaso, J J</td>
<td>48, 90</td>
</tr>
<tr>
<td>Cohen, S D</td>
<td>97</td>
<td>Klett, J E</td>
<td>63, 84</td>
</tr>
<tr>
<td>Craker, L E</td>
<td>9</td>
<td>Kling, G J</td>
<td>49</td>
</tr>
<tr>
<td>Cranshaw, W S</td>
<td>86</td>
<td>Kunz, J E</td>
<td>29, 41</td>
</tr>
<tr>
<td>Currier, C</td>
<td>98</td>
<td>Laemmlien, F</td>
<td>15</td>
</tr>
<tr>
<td>Dahlinen, DL</td>
<td>101</td>
<td>Lanier, G N</td>
<td>96</td>
</tr>
<tr>
<td>Dana, M C</td>
<td>94</td>
<td>Leone, I A</td>
<td>114</td>
</tr>
<tr>
<td>Dana, M N</td>
<td>108, 132</td>
<td>Linderman, R G</td>
<td>128</td>
</tr>
<tr>
<td>Davis, S H</td>
<td>6</td>
<td>Littrell, R H</td>
<td>24</td>
</tr>
<tr>
<td>Davis, T D</td>
<td>115</td>
<td>Lumis, G P</td>
<td>30, 33, 64, 113, 124</td>
</tr>
<tr>
<td>Dirr, M A</td>
<td>10, 60</td>
<td>McBride, J R</td>
<td>106</td>
</tr>
<tr>
<td>Dixon, R K</td>
<td>78</td>
<td>McGawley, E C</td>
<td>51</td>
</tr>
<tr>
<td>Donnelly, J R</td>
<td>39</td>
<td>McNabb, H S</td>
<td>55</td>
</tr>
<tr>
<td>Drillas, M J</td>
<td>29, 41, 56</td>
<td>Miller, J C</td>
<td>32</td>
</tr>
<tr>
<td>Driver, C H</td>
<td>52</td>
<td>Miller, R W</td>
<td>38</td>
</tr>
<tr>
<td>Dunn, J P</td>
<td>130</td>
<td>Mitchell, C A</td>
<td>50</td>
</tr>
<tr>
<td>Dutcher, J D</td>
<td>24</td>
<td>Moorman, G W</td>
<td>87</td>
</tr>
<tr>
<td>Fuchigami, L H</td>
<td>12</td>
<td>Morgan, D L</td>
<td>25</td>
</tr>
<tr>
<td>Gaugler, R R</td>
<td>129</td>
<td>Morselli, M F</td>
<td>91</td>
</tr>
<tr>
<td>Gerhold, H D</td>
<td>20</td>
<td>Mower, R</td>
<td>16</td>
</tr>
<tr>
<td>Gibbons, F D</td>
<td>85</td>
<td>Nielsen, D G</td>
<td>31</td>
</tr>
<tr>
<td>Gilliam, C H</td>
<td>77</td>
<td>Ostrofsky, W D</td>
<td>73</td>
</tr>
<tr>
<td>Gilman, E F</td>
<td>127</td>
<td>Parmeter, J R</td>
<td>74</td>
</tr>
<tr>
<td>Goodell, B S</td>
<td>54, 67</td>
<td>Partridge, A D</td>
<td>68</td>
</tr>
<tr>
<td>Green, T L</td>
<td>131</td>
<td>Pecknold, P</td>
<td>100</td>
</tr>
<tr>
<td>Hamilton, D F</td>
<td>23</td>
<td>Pellett, H</td>
<td>17</td>
</tr>
</tbody>
</table>

ISA Research Committee Chair
Director, Shade Tree Laboratories
University of Massachusetts
Amherst, Massachusetts 01003