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The social value of the urban forest to local urban popula-
tions has long been recognized. In contrast, the impact of
the urban forest on global and local environments is not
clearly understood, and the impact of urban trees on
carbon sequestration, mitigation of urban heat, and removal
of pollution remain topics of contemporary scientific study.
Land cover conversion in urban areas is typically faster than
in wildland areas, thus there is a need for rapid measure-
ment methods of urban biophysical variables that are
repeatable and economically efficient.

Leaf area index (LAI) has been identified as one of the
core biophysical variables for landscape monitoring at all
scales (Pierce and Running 1988; Lymburner et al. 2000).
LAI has three definitions in the literature but is usually
standardized to represent the green area (m2) of flat
horizontal leaves per unit of ground area (m2) (Chen and

Black 1992; Chen et al. 1997; Barclay 1998). Many sce-
narios of season and landscape allow LAI measurement by
earth resource satellites, and LAI is a derivative data
product of many remote sensing initiatives. However, few
studies have examined methods of combining satellite LAI
estimates with those made using ceptometers in the urban
forest to estimate LAI over large urban areas.

This research extends the work of Peper and McPherson
(2003) that compared the accuracy of various nondestruc-
tive field measurement devices to accurately measure urban
tree LAI. In the context of that previous work,
algorithmically manipulated satellite data used in this study
become an additional nondestructive method of measuring
urban LAI.

The objective of this research is to develop transfer
equations that can be used to convert satellite LAI measure-
ments to their gap-fraction equivalents. Our hypothesis
proposes that satellite and ground LAI measurements are
related and that statistical and neural network approaches
can be used to interconvert between the two methods of
measurement.

URBAN REMOTE SENSING
Instruments aboard remote sensing satellites measure the
electromagnetic energy emitted or reflected from Earth or
its atmosphere, allowing terrestrial objects to be distin-
guished and characterized. For example, when illuminated
by the noonday sun, grass on an irrigated golf course is not
only visibly green but also reflects intercepted infrared solar
energy in proportion to the amount of its spongy mesophyll.
Grass receiving insufficient moisture to maintain mesophyll
turgidity may appear equally as green as adjacent well-
watered grass but would decrease significantly in infrared
reflectance. If spatially extensive, this stress would be
detectable from spaceborne instrumentation and would
allow researchers to accurately map the affected area. Using
similar logic, land cover types are mapped, and vegetation
biophysical variables are measured from spaceborne
instruments.

Historically, remote sensing in urban areas has been
constrained by the spatial complexity of urban scenes. The
problem is related to the spatial resolution of the satellite
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sensor. A single image resolution element (pixel) may be
measuring the spectral response of a land cover mixture
rather than a single land cover type. For example, a subur-
ban pixel may represent a mixture of grass, asphalt, con-
crete, and roof shingles. This kind of spectral mixing makes
urban remote sensing less amenable to statistical methods
that assume normal distributions and no measurement
error. Newer spaceborne instruments, having finer spatial
resolutions, reduce the constraint and provide better data
for urban remote sensing (Jensen et al. 2003). The improve-
ment in resolution is fortunate, because governments (e.g.,
state, county, city) and private companies annually invest
hundreds of millions of dollars acquiring remotely sensed
data that detail the urban landscape more effectively than
through traditional “windshield surveys” (Jensen 2000).

DATA AND METHODS
Study Area
The city of Terre Haute is located in Vigo County along the
banks of the Wabash River in west central Indiana, U.S. (39°
25′ N, 87° 25′ W). Terre Haute government officials have
made a conscious effort to maintain the urban tree canopy
through a comprehensive tree ordinance that governs both
tree removal and planting. The ordinance is administered by
a tree advisory board consisting of city residents appointed
by the city officials to make suggestions and recommenda-
tions to the mayor, city forester, city engineer, and city
council.

LAI Field Measurements
Traditional field measurement of LAI has taken two ap-
proaches. The first approach requires the destructive
harvesting of leaves within a vertical column passing upward
through the entire tree canopy. The second involves
collection of leaf litterfall. These direct methods are similar:
They are time intensive and require many replicates to
account for spatial variability in the canopy (Green et al.
1997). However, these direct LAI measurements are
accurate for a very specific geographic location, are
relatively easy to perform by untrained personnel, and are
well understood by ecologists.

Gap-fraction analysis is a nondestructive field method
that has been developed to estimate LAI. Gap-fraction
analysis is predicated on the theory that the decrease in light
intensity (light attenuation) with increasing depth in vegeta-
tive canopies can be described by the relationship:

where IL/IO is the fraction of incident light at the top of the
canopy (IO) reaching depth L in the canopy, LAI(L) is the
cumulative LAI from the top of the canopy to point L, k is a
stand or species specific constant, and e is the natural

logarithm base (Larcher 1975; Aber and Melillo 1991).
Different types of vegetation have different k values, causing
different rates of light attenuation for the same leaf area.
The principal factor causing this is “twig angles and the
angles that the foliage subtends with the twig” (Barclay
1998; see also Larcher 1975). Field-measured LAI using
gap-fraction analysis assumes that leaf area can be calcu-
lated from the fraction of direct solar energy that penetrates
the canopy (canopy transmittance). Gap-fraction techniques
have been used to study LAI in many different forest
settings (Pierce and Running 1988; Chason et al. 1991;
Ellsworth and Reich 1993; Nel and Wessman 1993; Green et
al. 1997).

In this study, LAI was measured using the gap-fraction
approach in 143 random locations (sampling sites) through-
out the study area during July and August 2001. Like most
urban areas, land cover in Terre Haute consists of a wide
variety of vegetated and nonvegetated patches. Vegetated
areas sampled included trees, shrubs, grasses, and agricul-
tural fields growing different varieties of corn and soybeans.
Unvegetated areas included buildings, streets, parking lots,
ponds, lakes, and the Wabash River. The randomly selected
sampling sites represented all major land cover types in
Terre Haute.

Each of the 143 sampling sites was defined as a 20 × 20
m (65.6 × 65.6 ft) quadrat identified by the global position-
ing system coordinates of its center. At each sampling point,
16 below-canopy, photosynthetically active radiation (PAR)
measurements were collected, one in each cardinal direc-
tion at each corner of the 20 m quadrat. The PAR measure-
ments were collected using a Decagon AccuPar
Ceptometer™ held approximately 1 m (3.3 ft) above the
ground beneath the tree cover. The AccuPar Ceptometer
consists of a linear array of 80 adjacent, 1 cm2 (0.16 in2) PAR
sensors mounted rigidly along a bar and oriented so that
when the operator holds the ceptometer horizontally, the
PAR passing downward through the canopy can be mea-
sured. The ceptometer stored the 16 PAR samples taken at
each sampling site and calculated the LAI average automati-
cally. This sitewide LAI average was then recorded along
with general operator notes regarding the sampling site
character.

Satellite Sensor Data
Data from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) sensor were used for
comparison to the field LAI measurements. ASTER data are
collected in several wavelengths, often referred to as bands.
This study employed ASTER bands 1, 2, and 3 measuring the
green, red, and near-infrared segments of the electromag-
netic spectrum (520–600 nm, 630–690 nm, and 790–860
nm), respectively. These wavelengths are used in vegetation
studies because of their correlation to the quantity and

    IL IO = e −kLAI ( L ) , (1)
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health of green vegetation (Jensen 2000). Remote sensing
data are commonly used to calculate vegetation indices—
dimensionless, radiometric measures of the relative abun-
dance of green vegetation, including LAI (Jensen 2000). One
of the most common vegetation indices is the Normalized
Difference Vegetation Index (NDVI). The NDVI is calculated
using the equation (Rouse et al. 1974):

where NIR is the near-infrared reflected radiant flux, and
RED is the red reflected radiant flux.

An ASTER image of the study area acquired in July 2001
was used for this investigation. The image had a spatial
resolution of 15 m (49.5 ft). Using a United States Geologi-
cal Survey digital raster graphic image, the ASTER scene was
geometrically adjusted to the same coordinate system used
for the field data collection. This adjustment ensured that
the 143 sample sites could be accurately registered to the
ASTER data.

Estimating LAI Using Regression
As mentioned above, the principal objective of this research
was to create transfer equations that could be used to
convert satellite LAI measurements to their gap-fraction
equivalents. Because correlation and regression are com-
mon methods used to model forest biophysical characteris-
tics with remotely sensed data (e.g., Jensen et al. 2000), their
use was suggested. In this instance, multiple regression
analysis was performed using brightness values from the
three ASTER bands as the independent variables (Table 1).
Because previous remote sensing research has shown that
ratios and vegetation indexes derived from brightness values
(e.g., NDVI) frequently measure vegetation differences
better than the direct brightness values alone (Fassnacht et
al. 1997; Jensen 2000), five derived independent variables
were also explored in the regression process. These variable
are described in Table 1. In all regressions, the average field
site LAI value (LAI

obs
) was the dependent variable.

The goodness of the regression models was measured in
two ways. The first is the standard error of the estimate
(standard error of the estimate is synonymous for root
mean square error; the former term is preferred in regres-
sion, whereas the latter term is preferred in neural network
studies) defined by

where LAI
pred

 is the LAI for a given fieldsite predicted by the
regression. The summation is iterated over all the observa-
tions in the dataset (i = 1 to n). Smaller values of SEE indicate
better fit between model and observed data and can be
interpreted as the best estimate of the standard deviation of
the observations around the regression line. The second
method was the common multiple correlation coefficient (R)
as described in Marascuilo and Levin (1983). The minimum
acceptable level of significance in all the statistical analyses
was 0.05.

Estimating LAI Using a Back-Propagation Feed-
Forward Network
Artificial neural networks (ANNs) grew out of research in
artificial intelligence, specifically attempts to mimic the fault
tolerance and learning capacity of biological neural systems
by modeling the low-level structure of the brain. Research
on ANNs has been motivated from their inception by the
recognition that the brain computes in a very different way
than digital computers (Haykin 1994).

A neuron is the fundamental processing unit of an ANN.
Artificial neurons are analogous to biological neurons in the
human brain. ANN behavior resembles that of the brain in
two respects. First, knowledge is acquired by the network
through a learning process. Secondly, interneuron connec-
tion strengths known as synaptic weights are used to store
knowledge (Haykin 1994). ANNs do not rely on statistical
relationships for function fitting but adaptively estimate
continuous functions from data without mathematically
describing how outputs depend on inputs (e.g., adaptive
model-free function estimation using a nonalgorithmic
strategy) (Gopal and Woodcock 1996).

ANNs have been used in remote sensing applications to
classify images (Bischof et al. 1992; Hardin 2000) and incorpo-
rate multisource data (Benediktsson et al. 1990). ANN
classifiers have been successfully used with remote sensing
data because they take advantage of the ability to incorporate
non-normally distributed numerical and categorical GIS data
and image spatial information (Jensen et al. 2000).

Several forest studies have demonstrated the utility of
coupling ANN approaches with satellite data. For example,

    
NDVI =

NIR − RED

NIR + RED
, (2)

Variable Meaning

GREEN ASTER 520–600 nm band (green band)
RED ASTER 630–690 nm band (red band)
IR ASTER 790–860 nm band (infrared band)
GRRD_RAT Green/red band ratio
RDIR_RAT Red/infrared ratio
NDVI Normalized difference vegetation index (see Equation 2)
GRRD_DIF Green–red band difference
RDIR_DIF Red–infrared band difference

Table 1. Variables used in both the regression and neural
network exploration.

(3)

    
SEE =

LAIpred − LAIobs( )2

i=1

n

∑
n

,
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Jensen et al. (2000) used an ANN to discriminate conifer
stand age in southern Brazil using remotely sensed imagery.
That study demonstrated that ANNs were (1) competent to
model the complex nonlinearity of biophysical forest
processes, (2) better at estimating conifer stand age than
traditional image processing techniques, (3) ideal for
modeling the latent complexity of plant biophysical charac-
teristics during the plant life cycle, and (4) able to explain
more variance in forest biophysical parameters than their
traditional statistical counterparts. In another study, Jensen
and Binford (2004) found that ANNs were more accurate
than traditional statistical techniques to estimate LAI in
forested ecosystems throughout north central Florida.

For this research, a back-propagation feed-forward ANN
was created and trained using the variables shown in Table 1
as inputs, and the fieldsite LAI (i.e., LAI

obs
) as the output.

This procedure is directly analogous to the multiple regres-
sion approach described previously in this article, in which
ASTER variables and LAI

obs
 were the independent and

dependent variables, respectively.
The procedure used to build the ANN models generally

followed Hardin (2000). The calibration of several candidate
networks required trial and error. The networks were
trained with different variable combinations, different
numbers of hidden neurons, different learning rates, and
different momentum rates until an acceptable error rate was
obtained or further improvement was unlikely. Parsimony
was also sought in the neural network solutions. Given
equal predictive value from alternative network configura-
tions, the network with the fewest hidden neurons was
considered superior to more complex networks.

Like the regression approach described above, the SEE was
also used to measure the accuracy of the network predictions
by comparing LAI

obs
 values against LAI

pred
 values across all 143

fieldsites. R was also calculated for neural networks by
regressing predicted LAI values against their observed counter-
parts. Use of the same accuracy metrics allowed the regression
results to be compared to the ANN outcome.

RESULTS AND DISCUSSION
The field LAI measurements were made at 143 Terre Haute
area locations (n = 143). The maximum and minimum LAI
recorded were 7.7 and 0.0, respectively. The mean LAI
measured was 1.2 (s = 1.9).

Regression Results
All possible single variable regression models were tested.
Several provided statistically significant predictive ability.
The regression model providing the highest correlation
coefficient (R = 0.60) and lowest error (SEE = 1.54) was
created from the ratio of the ASTER green and ASTER red
bands (GRRD_RAT). In unstandardized form, the predictive
model was

The best two-variable model included the same ratio as
Equation 4 but added the infrared ASTER band. The
predictive equation using these two variables was

This model lowered the standard error of the single
variable model by only 3% (SEE = 1.51) and improved the
simple correlation by only 5% (R = 0.62). The addition of
further variables did not improve the predictive ability of
the model.

For all the regression equations previously cited, their
coefficients, and constants were significant at the 0.05 level.
Use of the single variable model (Equation 4) is suggested
because of its simplicity. The direction of the coefficient
signs for the regression variables is logical. As the amount of
green reflectance increases and red reflectance decreases,
the ratio GRRD_RD increases mathematically and LAI

pred
 also

increases. In addition, as infrared reflectance increases, so
does LAI

pred
. These results suggest that both the ratio and the

infrared band are measuring the same physical phenomena;
they are measuring the increase in green reflectance as leaf
area increases with the co-occurring loss of ground reflec-
tance.

Artificial Neural Network Results
All the variables in Table 1 were submitted separately to
ANN analysis to create a single variable model explaining
LAI. Three single-variable networks produced nearly
equivalent LAI predictive accuracy (R ≈ 0.69, SEE ≈ 1.40).
These three models employed respectively the ASTER green
band, NDVI, and the ratio between the ASTER red and
infrared variables (RDIR_RAT). In all three cases, networks
with two neurons in a single hidden layer were sufficient for
fitting the network. The best two variable model tested
included the ASTER green band (GREEN) and the ratio
between the ASTER red and infrared bands (RDIR_RAT)
trained on single hidden layer of three neurons. This
network produced a moderately high R value (R = 0.71) with
an SEE of 1.35. A Visual Basic function that reproduces the
network output is shown in Figure 1. This function returns
LAI

pred
 when passed GREEN, RED, and INFRARED brightness

values. The variable RDIR_RAT is calculated inside the
function from RED and INFRARED and then used with
GREEN in the network calculations. No three-variable
network models significantly exceeded the predictability of
this two-variable network model.

(4)LAI
pred

 = 4.79 × GRRD_RAT – 5.81.

(5)LAI
pred

 = 3.99 × GRRD_RAT + 0.02 × IR – 7.10.
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The interpretation of the neural network results follows
the same logic used in discussing the regression results.
LAI

pred
 increases with increased reflectance in the ASTER

green band. The ratio of the red to infrared reflectance
(RDIR_RAT) assumes the role that GRRD_RAT played in the
regression analysis; it is a measure of the ratio of back-
ground to photosynthetically active vegetation or healthy,
spongy leaf mesophyll. With an increase in vegetation at the
expense of impervious material, infrared reflectance in the
ratio increases while red reflectance decreases. This causes
a corresponding increase in LAI

pred
.

CONCLUSION
As shown in Table 2, the ANN technique was superior to the
multiple regression approach. In all cases, the ANN pro-
duced higher values of R and lower values of SEE than did
regression. These results provide another case study
demonstrating that a biophysical variable critical to urban
study (i.e., LAI) can be predicted from remotely sensed
satellite data and be more accurately predicted using a feed-
forward back-propagation neural network than multiple
linear regression.

Using ANNs to estimate LAI could enhance the accuracy
of some studies that have relied on traditional regression
techniques in the past. To improve such studies, ANNs could
be created and trained using representative ecosystem in situ
LAI samples and then used to estimate LAI in other image
areas. For example, after measuring in situ urban LAI using
one of the methods described by Peper and McPherson
(2003), an ANN could be created and trained that is unique
to that specific urban area. A program such as that shown in
Figure 1 could then be used to estimate LAI in the
unsampled remainder of the urban area. This is demon-
strated in Figure 2. In this example, LAI has been estimated
for the Terre Haute region using the ANN represented in
Figure 1. This kind of map may be useful when urban
planners and others examine the distribution of LAI in
urban and suburban areas.

While the ANN method proved most accurate in Terre
Haute, this may not be the case in other urban areas under
different environmental conditions. Future research could
focus on these issues and determine whether ANNs provide

the most accurate method to estimate LAI
elsewhere. Also, care should be taken to ensure
that the network algorithms and regression
equations developed in this research are only
applied in areas having similar solar zenith
angles and vegetation types. While this study
was completed at the landscape level, it
suggests that artificial neural networks may be
created and trained in other areas throughout
the world to provide an accurate method to
remotely estimate LAI. Further, these models

Model reference Building method Variables R SEE

Equation 3 Regression GRRD_RAT 0.60 1.54
Equation 4 Regression GRRD_RAT, IR 0.62 1.51
* ANN GREEN 0.69 1.39
* ANN NDVI 0.68 1.39
* ANN RDIR_RAT 0.69 1.39
Figure 1 ANN GREEN, RDIR_RAT 0.71 1.35

Table 2. Comparison of regression and neural network models. In all
cases, the neural network models were better than the regression-
based models for predicting LAI.

Figure 1. Visual Basic function of neural network to
predict LAI from ASTER band brightness values.
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can be used to answer important geographic
questions by describing temporal and spatial LAI
dynamics at landscape to regional scales (e.g.,
Jensen 2002). Of equal importance, this method-
ology can help land managers, conservationists,
and urban foresters formulate urban environ-
mental policy that is empirically supported by
inexpensive remotely sensed biophysical data.
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Résumé.     Une estimation précise de la masse foliaire en milieu
urbain est importante afin de comprendre le rôle de la forêt urbaine
par rapport à l’atténuation de la chaleur, l’absorption des polluants et
le captage du carbone. Les données provenant de satellites en orbite
constituent une source alternative pour estimer de manière peu
dispendieuse et non destructive cette variable biophysique urbaine
importante. Des mesures d’index de la surface foliaire de 143 sites
urbains de Terre Haute en Indiana ont été modélisées sous la forme
d’une fonction du flux de réflexion de la radiation, et ce tel que
détecté par l’ASTER (Advanced Spaceborne Thermal Emission and
Reflection Radiometer). Des modèles de régression multiple d’index
de la surface foliaire ont été comparés à des valeurs estimées qui ont
été produites à partir de systèmes artificiels. L’estimation la plus
précise a été produite à partir du système artificiel utilisant la bande
verte de l’ASTER ainsi qu’à partir du ratio des bandes de rouge et du
proche infrarouge de l’ASTER. Dans ce cas, la simple corrélation
entre les valeurs observées et les valeurs prédites d’index de surface
foliaire était modérément élevée (R = 0,71). L’erreur standard
d’estimation d’index de surface foliaire était de 1,35. Dans tous les
cas, le degré de précision des modèles de prédiction à partir du
système artificiel excédait celui des modèles de régression multiple.
L’examen des paramètres dans les modèles ayant obtenu du succès a

indiqué que l’estimation de l’index de surface foliaire en milieu
urbain de Terre Haute était physiquement prédictible par rapport
aux proportions relatives de chlorophylle foliaire, de mésophylle
foliaire spongieuse et de matières indurées (ex.: béton, asphalte,
sol) qui constituaient les divers éléments des images satellite.

Zusammenfassung.     Eine akkurate Schätzung der urbanen
Blattfläche ist notwendig, um die Rolle der urbanen Forstwirtschaft
bei der Mitigation von Hitzeinseln, der Entfernung von
Umweltverschmutzung und der Kohlenstoffausfällung zu verstehen.
Per Satelliten aufgenommene Daten liefern eine alternative Methode,
um preiswert und ohne jegliche Zerstörung diese wichtige
biophysikalische Variable zu bewerten. An 143 urbanen Standorten in
Terre Haute, Indiana wurden Ceptometer-Messungen des
Blattflächen-Index (LAI) als eine Funktion der reflektierten
Strahlung, aufgenommen durch ASTER, modeliert. Die vielfältigen
Regressionsmodelle des LAI wurden mit Schätzungen des feed-
forward back-propagation artificial neural networks verglichen. Die
beste Schätzung wurde von dem Neutralen Netzwerk produziert bei
der Verwendung des grünen ASTER-Bandes und dem Durchschnitt
des roten und nahe infrarotem ASTER-Band. In diesem Fall war die
einfache Korrelation zwischen beobachtetem und vorhergesagtem
LAI-Wert ziemlich hoch (R = 0,71). Der Standartfehler bei den LAI-
Schätzungen betrug 1,35. In jedem Fall überstieg die Akkurese der
Vorhersagen der neutralen Netzwerk-Modelle die der multiplen
Regressionsmodelle. Die Untersuchungen der Parameter in den
erfolgreichen Modellen zeigte, dass die Schätzungen der urbanen LAI
in Terre Haute physikalisch an den Proportionen des
Blattchlorophylls, des Blattmesophylls und der anderen Substanzen
(z.B. Beton, Asphalt, Boden) die individuellen Bildelemente des
Satellitenbildes darstellen.

Resumen.     La estimación precisa del área foliar urbana es
importante para el entendimiento del papel del bosque urbano en la
mitigación de la isla de calor, remoción de la contaminación y
captura de carbono. Los datos de satélite sensados remotamente
proporcionan un método alternativo para estimar de una forma no
costosa y no destructiva esta importante variable biofísica urbana.
Se modelaron las mediciones de índice de área foliar (LAI) con
Ceptómetro en 143 sitios urbanos en Terre Haute, Indiana, como
una función de la radiación reflejada sensada por el satélite
radiómetro de emisión y reflexión termal (ASTER). Se compararon
modelos de regresión múltiple de LAI con las estimaciones con
redes neuronales producidas por las imágenes de satélite. La
estimación más precisa fue producida utilizando la banda verde y la
relación de rojo e infrarrojo cercano del ASTER. En este caso, la
correlación simple entre los valores observados y los predichos de
LAI fueron moderadamente altos (R = 0.71). El error estándar de
LAI estimado fue 1.35. En cada caso, la precisión predictiva de los
modelos de redes neuronales excedieron los modelos de regresión
múltiple. El examen de los parámetros en los modelos exitosos
indican que la estimación de LAI en Terre Haute es físicamente
predictiva en las proporciones relativas de clorofila foliar, mesófilo
esponjoso de la hoja y material inorgánico (concreto, asfalto,
suelo), constituyendo los elementos pictóricos individuales de las
imágenes de satélite.


