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Ecological Implications of Organic Mulches in Arboriculture: 
A Mechanistic Pathway Connecting the Use of Organic 

Mulches with Tree Chemical Defenses

Abstract. In addition to the aesthetic and practical benefits of mulching, studies have shown indirect benefits of organic mulch-
es to tree establishment and growth. These indirect benefits are associated with direct improvements on soil water and nutri-
ent availability by mulches. The generalization of the organic mulches benefit to soil and trees has been questioned by several 
studies showing contradictory results under different experimental conditions and mulching materials. In addition, overall ben-
efits for trees may be overlooked by focusing studies on some aspects of plant performance (e.g., plant growing rate) while ig-
noring others (e.g., plant chemical defense). This paper reviews studies showing how organic mulches can directly affect 
plant resource availability in the soil, presenting evidence from the literature that illustrates the influence of organic mulches 
on plant resource availability can also affect tree photosynthate allocation dynamics with direct consequences on plant chemi-
cal defenses. Based on the reviewed literature, presented here is a mechanistic pathway to illustrate how organic mulches can 
influence plant resources in the soil, and in turn how that can affect tree physiology and tree-insect interactions in urban areas.
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Organic mulches are extensively used in urban systems to improve 
plant establishment and development (Acquaah 2004). Mulch is 
defined as “any material such as straw, sawdust, leaves, plastic 
film, and loose soil that is spread on the surface of the soil to 
protect the soil and plant roots from the effects of raindrops, soil 
crusting, freezing, and evaporation” (Brady and Weil 1999). This 
definition is based on mulch-substrate physical properties that 
benefit mostly soil structure and water content. Beside the physi-
cal benefits of mulching, this practice can increase or decrease the 
amount of inorganic N in the soil depending on the carbon (C) to 
nitrogen (N) ratio (Melillo et al. 1982; Herms et al. 2001; Lloyd et 
al. 2002; Erhart and Hartl 2003). These alterations to the soil, that 
directly affect tree growth, can also affect the synthesis of chemi-
cal defenses and as consequence plant-herbivore interactions. 

This paper proposes a mechanistic pathway to explain how the 
impact of organic mulches applied to the soil surface can influ-
ence patterns of tree resource uptake, C assimilation and C al-
location between growth and chemical defenses. Present here is 
a model that illustrates pathway connections and identifies the 
three most likely affected processes: (i) soil resource availability 
(water and N), (ii) plant C and N uptake, and (iii) plant C alloca-
tion between growth and the production of secondary compounds 
(Figure 1). The objective of this paper is to compile scientific 
evidence, pertinent for arboriculture, showing direct and indirect 
relationships among mulch application, soil resource availabil-
ity and plant physiological responses. This review should in-
crease awareness among arborists and scientists in the tree care 
industry to improve the utilization of organic mulches and pro-
mote further experimental studies in urban landscape scenarios. 

COnCEPTUAL FrAMEwOrk

Effect of Organic Mulches on resource  
Availability
Organic mulches can affect the soil availability of two important 
resources for plants: water and N. Benefits of mulches to soil 
water content have been associated with the physical properties 
of mulches to buffer soil temperature (Mbagwu 1991; Bussiere 
and Cellier 1994). During days with high temperatures, a mulch 
layer protects soil surface from direct solar radiation. As a con-
sequence, soil temperature remains cooler than air temperature 
and less water evaporates from the soil. Iles and Dosmann (1999) 
reported that 2–10 cm (0.79–4 in) of organic mulches (pine bark, 
pine wood, and hard wood chips) were more effective in reduc-
ing soil surface temperature [by ~2ºC (3.6ºF)] and increasing 
soil gravimetric water content [by ~0.2 g kg-1 (3.2x10-3oz lb-1)] 
compared to inorganic mulches (pea gravel, lava rock, river rock 
and crushed red bricks) or bare soil. Furthermore, Appleton et al. 
(1990) found that, during summer days, when soil covered with 
fabric or plastic film to protect them from weed establishment 
were also mulched, soil temperature was lower and water con-
tent was higher than nonmulched soils independently of the weed 
control treatment. Although the influence of mulching on soil 
water content is frequently associated with reduction in soil tem-
perature, De Vleeschauwer et al. (1980) showed that mulching 
can also improve water content by enhancing biological activity 
of soil macrofauna (e.g., earthworms) that increases soil porosity. 

Despite the numerous studies reporting positive benefits of 
organic mulches on soil water content, other studies have also 
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reported negative or no effect of mulching on plant water avail-
ability (Watson and Kupkowski 1991; Erhart and Hartl 2003, Gil-
man and Grabosky 2004, Cook et al. 2006). These contradictory 
results reflect the variability in application methods and mulch 
material. For example, Gilman and Grabosky (2004) reported 
that hydric stress on balled-and-burlapped oak trees increased 
proportionally to mulch depth, after two weeks of planting. This 
study shows that under conditions of low precipitation and/or 
low irrigation rate, mulch can intercept significant amounts of 
water, reducing soil water-recharging rates (Gilman and Gra-
bosky 2004). Depending on the environmental conditions, this 
negative effect of mulch on soil water content could be aggra-
vated by applying mulch layer thicker than recommended by the 
International Society of Arboriculture [5–10 cm (2–4 in)] (ISA 
2004) and by using mulching substrates with high water holding 
capacity, such as farmyard manure compost (Cook et al. 2006). 

Organic mulches also influence the availability of N in the 
soil. In general, organic matter increases soil labile N through 
leaching and decomposition (Lambers et al. 1998; Aerts and 
Chapin 2000). During decomposition, decaying plant mate-
rial is broken down and incorporated in the soil as particulate 
organic matter (POM). Nitrogen is released from POM as sol-
uble organic N. Then, soil microorganisms may mineralize the 
dissolved organic N to ammonia (NH

4
+), which may be further 

oxidized to nitrate (NO
3

-). Ammonia and nitrate are consid-
ered the main sources of N used by plants in most ecosystems 
(Chapin 1995; Aerts and Chapin 2000). In non- or infrequent-
ly-fertilized systems, decomposition of plant material provides 
more than 90% of N supplied to plants (Lambers et al. 1998). 
For example, in Sitka spruce (Picea sitchensis) stands, system 
productivity of second rotation increased when branches and 
leaves from previous harvest episodes were left on site (Proe 
et al. 1996). The improvement in tree growth was attributed to 
the contribution of decomposing tree residues to the soil nutri-
ent pool. The contribution was estimated to meet uptake require-
ments of second rotations for up to nine years (Proe et al. 1996). 

Decomposition rate of decaying organic matter is highly con-
trolled by environmental conditions, soil microbial activity and 
the organic matter chemical composition (Vitousek et al. 1994). 
Regarding organic matter chemical composition, studies have 
shown negative relationships between decomposition rates and 
the proportions of lignin:N and phenols:N ratios in decaying or-
ganic matter (Melillo et al. 1982; Vitousek et al. 1982; Northup et 
al. 1995; Aerts and De Caluwe 1997). Furthermore, the proportion 
of C:N in the organic matter has been found to be the most consis-
tent predictor of organic matter decomposition rate (Seneviratne 
2000). Specifically, plant residues with high percentages of N (> 
2%), such as composted organic materials, show linear relation-
ships with the amount of N released to the soil during decomposi-
tion (Seneviratne 2000). This pattern though, was better explained 
by the C:N proportion in the organic matter, rather than total N. 

As in decaying organic matter, decomposition rate of or-
ganic mulches is also influenced by the substrate C:N ratio. 
Lloyd et al. (2002) compared the effect of two mulches made 
out of shredded wood pallets (C:N > 100:1) and composted 
yard-waste (C:N < 20:1) on soil N dynamics. They found that 
mulched soils with yard-waste compost had higher levels of total 
N, labile N and mineralization rate compared to sites mulched 
with shredded wood pallets. In the same study, microbial or-
ganisms immobilized up to 83% of the total pool of N in the 

soils after mulching with shredded wood pallets. These results 
support the study of Sønsteby et al. (2004) where the amount 
of both ammonia and nitrate, were lower on mulched soil 
with bark chips (C:N ~135:1) compared to nonmulched soils. 

The association between organic matter C:N ratio and the 
amount of N released during decomposition can be explained us-
ing a metabolic approach. Overall, soil microorganisms require 
one atom of N for the consumption of a substrate containing 
20 atoms of C (Davet 2004). During decomposition of organic 
matter with C:N ratio higher than 20, microorganisms have to 
supplement their N demand by absorbing N from the soil solu-
tion (i.e., immobilization), which in many cases results in com-
petition with surrounding plants. In contrast, when the organic 
matter C:N ratio is lower than 20, excess N is excreted  by the 
soil microorganisms  in the form of inorganic N (i.e. mineral-
ization) becoming available for the plants (Lambers et al. 1998; 
Davet 2004). This proportion of C to N can vary between 20 and 
35 depending on the soil microbial community (Smith 1982). 

Besides mulch chemical composition, soil conditions can also 
influence decomposition rates and consequently soil N availabil-
ity. Microbial biomass and activity are sensitive to changes of soil 

Figure 1. Conceptual model illustrating the effect of organic 
mulches on plant nitrogen (N) and carbon (C) uptake, and C allo-
cation. White circles represent main inputs and transitional forms 
of C in the mode. Black squares represent processes associated 
with soil N availability and soil environmental conditions. White 
squares represent plant processes associated with resource 
acquisition. Gray squares represent plant processes associated 
with photosynthate allocation. 
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pH, temperature, moisture and aeration (Davet 2004). However, 
the responses to change in these variables fluctuate among de-
composer community. For example, fungi are able to develop and 
reproduce in a pH range of 3.5 to 8.5 while most bacteria cannot 
survive at a pH lower than 6.5 (Davet 2004). In addition, extremes 
in temperature and soil moisture reduce decomposition rates of or-
ganic matter because they decrease metabolic activities of micro-
organisms (Swift and Anderson 1989; Barrett and Burke 2000). 

Extant nutrients in the soil may also affect mulch decom-
position by providing nutrients needed by microbes during de-
composition (Torn et al. 2005). However, some contrasting re-
sults have been reported between studies comparing organic 
matter decomposition rates in fertilized and nonfertilized soil. 
Torn et al. (2005) and Hobbie (2005) reported positive and 
significant correlation between litter decomposition rate and 
soil nitrogen availability in nonfertilized soil. This correlation 
however, was not detected when soil at the same study site was  
N-fertilized. Three potential explanation for these conflicting pat-
terns are: (1) decomposition process was not N limited (Torn et 
al. 2005), (2) decomposition was more limited by poor C qual-
ity (e.g., high lignin content) than by N availability (Hobbie 
2000), and (3) there was an inhibitory effect of supplied N on 
microbial synthesis of lignolytic enzymes (Hobbie and Vitousek 
2000; Torn et al. 2005). More studies are needed to understand 
what is causing the inconsistent effects of soil N content on 
mulch decomposition between fertilized and nonfertilized soils.  

In agro-forestry systems, mulching with blends of organic 
residue with contrasting C:N ratios is recommended as an alter-
native to enhance soil N content without adding fertilizer. Some 
advantages of this practice include: reduction of leaching losses, 
prolongation of nutrient availability and synchronization of nutri-
ent release with plant demands (Myers et al. 1994; Fortuna et al. 
2003). Schwendener et al. (2005) studied the effect of mixing 
high-C:N cacao litter with low-C:N leguminous litter on decom-
position and soil N dynamics in a cacao agro-forest system. In 
this study, legume leaves decomposed faster than cacao leaves 
without affecting the decomposition rate of cacao leaves during 
the time of the experiment (96 days). In addition, total soil N and 
microbial activity increased proportional to the amount of legume 
litter in the mulch mixture. These results suggest that N availabil-
ity of mulched soils with high C:N substrates (> 20) can be im-
proved by adding low C:N (< 20) organic material to the mulch. 

resource Acquisition
Changes of soil water and N availability by mulching can have 
a direct effect on the amount of C and N acquired by plants. 
Several studies have documented that acquisition of N by plants 
is directly related to the abundance of inorganic N in the soil 
(Min et al. 1999; Aerts and Chapin 2000). As mentioned before, 
most plants incorporate the majority of N in the inorganic forms 
(NH

4
+ and NO

3
-). Higher concentrations of NH

4
+ and NO

3
- in 

the soil can trigger the synthesis of nitrate reductase and glu-
tamine synthase in plants (Oaks 1994). These enzymes are in-
dispensable for the assimilation of NO

3
- and NH

4
+, respectively.

A close relationship between N acquisition and C acquisition 
has been well documented (Field and Mooney 1986). In forest 
systems, net primary productivity (NPP) of individual trees and 
entire forest stands are positively correlated with soil N avail-
ability (Oren et al. 1985; Aerts 1989; Aerts and Decaluwe 1989; 

Sampson et al. 2006). The enhancement in productivity occurs 
mostly because of the increase in total foliar mass. At stand lev-
el and when levels of available soil N increase, plants allocate 
more resources to leaf production (Millard and Proe 1991). In 
this way, trees can optimize the acquired N for C assimilation 
(Field 1983). Although NPP can also be enhanced by an increase 
in leaf photosynthetic ratio (Farquhar 1978; Shadchina and Be-
loivan 1993), studies with woody plants of different taxa have 
reported no significant effect of N-fertilization on specific leaf 
photosynthetic ratio (Laitinen et al. 2000; Merilo et al. 2006). 

Depending on the soil type, low soil water recharging rate 
promoted by thick layers of organic mulches can also limit  
C acquisition. Levels of C assimilation are determined by the 
amount of CO

2
 entering the leaves through the stomatal aper-

ture. Two dominant factors controlling stomatal conductance 
among plant species are: (1) the availability of water in the soil 
and (2) the particular water use efficiency of each species (Mar-
shall and Zhang 1994; Korol et al. 1999). Chapin (1991) pro-
posed a physiological mechanism to explain how water stress 
can affect stomatal conductance. Under water stress condi-
tions, the biosynthesis of abscisic acid in the roots is transferred 
to the leaves. This phytohormone is responsible for decreas-
ing the stomatal aperture and reducing the water loss. Conse-
quently, both transpiration and C uptake rates are constrained. 

resource Allocation
In terms of resource allocation, the model (Figure 1) has a partic-
ular focus on a plant’s ability to allocate photosynthate between 
growth and production of secondary compounds. Evidence in the 
literature suggests that manipulation of nutrient dynamics in the 
soil can influence patterns of photosynthate allocation between 
growth and the production of secondary compounds (Herms 
and Mattson 1992; McKinnon and Quiring 1998; Glynn et al. 
2003). For example, Wilkens et al. (1996) found that dry mass 
of tomato plant was positively correlated to the amount of fertil-
izer applied. However, the foliar concentration of two phenolics 
(rutin and chlorogenic acid) showed a parabolic relationship, 
with the highest concentrations of each at intermediate levels of 
fertilization. This pattern has been associated with plant defense 
hypotheses such as the Growth-Differentiation Balance (GDB) 
hypothesis because, in many cases, secondary compounds serve 
as natural defenses against pathogens and insect herbivores. 
Loomis (1953) and Herms and Mattson (1992) described the 
physiological mechanisms associated with the patterns of C al-
location between growth and secondary compounds under dif-
ferent levels of resource availability. They contend that: (i) the 
assimilation of photosynthate to biomass and the synthesis of 
secondary metabolites are negatively correlated because both 
are dependent upon the same C pool of photosynthates. That 
(ii) under conditions of high resource availability, plant photo-
synthates are preferentially allocated to biomass accumulation. 
Finally, (iii) any condition slowing biomass accumulation more 
than C acquisition through photosynthesis (e.g., moderated lev-
els of water or N availability) will increase the pool of photo-
synthates available for the synthesis of secondary compounds.

Alternatively, during the 1980s, a number of studies suggested 
that forest stands with “vigorous” trees (i.e., trees with high grow-
ing rates) are more resistant to herbivory (Larsson et al. 1983; 
Mitchell et al. 1983; Christiansen et al. 1987) and pathogen out-
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breaks (Matson and Waring 1984; Oren et al. 1985; Waring et al. 
1987). This hypothesis was based on studies that examined moun-
tain pine beetle outbreaks (Dendroctonus ponderosae). In these 
studies, stand wood production per unit of leaf area increased after 
thinning and fertilizing. Contrary to the GDB hypothesis, Waring 
and Pitman (1985) proposed that trees prioritize photosynthate al-
location as follows: new foliage > new roots > storage > diameter 
growth > chemical defenses. Under this assumption, trees growing 
under dense canopy are more susceptible to herbivores because 
they receive lower levels of photosynthetic active radiation and 
overall produce less photosynthate. Therefore, the amount of pho-
tosynthate available for synthesis of chemical defenses become 
limited and trees become more susceptible to herbivores. Waring 
and Pitman (1985) and Waring et al. (1992) recommended stand 
fertilization and thinning as pest control management strategies. 

Because of forest fertilization studies, fertilization has been 
adopted in urban landscapes as a managements practice to im-
prove pest resistance properties on urban trees (see Herms 2002). 
This recommendation, clearly contradicts Lorio’s (1986) point 
of view of a physiological trade-off between photosynthate al-
location to growth or to synthesis of chemical defenses. Lorio 
(1986) used the GDB hypothesis to explain how the synthesis 
of oleoresin [principle defensive chemicals against bark bee-
tles (Ruel et al. 1998)] can be reduced during periods of rapid 
growth, creating an opportunity for bark beetle attack. Lorio’s 
proposition was supported by studies using a variety of bo-
tanical taxa (Bryant et al. 1987, Bryant et al.1988, Hunter and 
Shultz 1995, Villalba et al. 2002). These studies showed that 
nutrient enhancement delayed long-term induced chemical de-
fenses and improved the palatability of foliage to herbivores. 

IMPLICATIOns FOr ArbOrICULTUrE
The International Society of Arboriculture recommends ap-
plying 5 to 10 cm of organic mulches around trees to improve 
aesthetics and edaphic conditions in the landscape (ISA 2004). 
The reviewed literature in this paper supports this recommenda-
tion. This study also concludes that organic mulches can directly 
affect soil water and N availability with indirect consequences 
for plant photosynthate allocation. Plant physiological response 
is species specific and depends on mulch material, and on soil 
properties such as fertility, water holding capacity and pH. How-
ever, the information compiled in this paper also illustrates gen-
eral physiological and ecological consequences for plants after 
altering edaphic conditions through mulching. These general 
consequences are illustrated in the conceptual model (Figure 1).

It is also suggested that the controversy between Waring’s 
and Lorio’s points of view (i.e., photosynthate allocation prior-
ity versus photosynthates trade-off between growth and chemi-
cal defenses) is present in urban systems. Furthermore, that the 
experimental evidence supporting the use of fertilizer to enhance 
tree pest resistance is scarce and inconclusive. In fact, evidence 
suggests fertilization enhances insect performance by redirect-
ing the resources allocated to defense and/or by increasing the 
palatability of the host plant (Herms 2002). These contradictory 
results reveal the necessity for additional studies that will help us 
understand the implication of mulching on tree physiological re-
sponses that affect their ecological, aesthetic, and economic value. 
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Résumé. En plus des bénéfices esthétiques et pratiques des paillis, 
des études ont démontré des bénéfices indirects provenant des paillis or-
ganiques, et ce sur la reprise des arbres et leur croissance. Ces bénéfices 
indirects sont associés à des améliorations directes sur la disponibilité en 
eau et en éléments minéraux par les paillis. La généralisation des béné-
fices au sol et aux arbres par les paillis organiques a été questionnée par 
plusieurs études qui montraient des résultats contradictoires sous différ-
entes conditions expérimentales et différents paillis. De plus, l’ensemble 
des bénéfices pour les arbres peuvent avoir été occultés par des études 
ciblées sur certaines aspects de la performance de la plante (ex.: taux de 
croissance de la plante) qui en occultaient d’autres (ex.: défense chimique 
de la plante). Dans cet article, nous faisons une revue des études qui dé-
montrent comment les paillis organiques peuvent directement affecter 
la disponibilité en ressources du sol pour la plante. Nous présentons des 
faits provenant de la littérature qui illustrent que l’influence des paillis 
organiques sur la disponibilité en ressources pour la plante peut aussi 
affecter les dynamiques d’allocation des photosynthate de l’arbre, et ce 
avec des conséquences directes sur les défenses chimiques de la plante. 
En se basant sur cette revue de littérature, nous présentons un chemine-
ment mécanistique pour illustrer comment les paillis organiques peuvent 
influencer les ressources pour la plante dans le sol, et en retour comment 
cela peut affecter la physiologie de l’arbre et l’interaction arbre-insectes 
en milieux urbains.

Zussamenfassung. Zusätzlich zu den ästethischen und praktischen 
Vorteilen von Mulchen, haben Studien auch indirekte Vorteile von or-
ganischen Mulchen für die Baumetablierung und Wachstum gezeigt. 
Diese indirekten Vorteile stehen mit den direkten Einflüssen auf Boden-
wasser und Nährstoffverfügbarkeit von Mulchmaterialien in Verbindung. 
Die Verallgemeinerung von organischen Mulchen und ihrem Beitrag zu 
Boden und Bäumen wurde in verschiedenen Studien hinterfragt und man 
ist dort auch zu widersprüchlichen Ergebnissen gekommen unter ver-
schiedenen Bedingungen und Mulchmaterialien. Zusätzlich können die 
allgemeinen Vorteile des Mulchens für Bäume leicht übersehen werden, 
wenn auf Studien fokussiert wird, die Telaspekte von Leistung (z.B. 

Wachstumsrate) hervorheben und andere (z.B. chemische Verteidigung 
der Pflanzen) außer Acht lassen. In dieser Studie geben wir einen Über-
blick über Studien, wie organische Mulche direkt die Verfügbarkeit der 
Ressourcen im Boden beeinflusst. Wir präsentieren Nachweise aus der 
Literatur, die verdeutlicht, dass der Einfluss von organischen Mulchen 
auf Pflanzenverfügbarkeit von Nährstoffen auch die Photosynthese bee-
influssen kann, mit direkten Konsequenzen für die chemische Verteidi-
gung der Pflanze. Basierend auf diesem Literaturüberblick präsentieren 
wir hier einen mechanischen Weg zur Illustration, wie stark organische 
Mulche die Pflanzenverfügbarkeit von Nährstoffen im Boden beeinflus-
sen und wie das wiederum die Baumphysiologie und Baum-Insekten-
Interaktionen in städtischen Gebieten verändern kann.

Resumen. Además de los beneficios estéticos y prácticos del mulch-
ing, los estudios han mostrado los beneficios indirectos de los mulches 
orgánicos para el establecimiento y crecimiento de los árboles. Estos ben-
eficios indirectos están asociados con el mejoramiento de la disponibili-
dad de agua y elementos del suelo por los mulches. La generalización 
de los beneficios de los mulches orgánicos al suelo y los árboles ha sido 
cuestionada por varios estudios que muestran resultados contradictorios 
bajo diferentes condiciones experimentales y materiales de mulching. 
Además, los beneficios para los árboles pueden ser pasados por alto al 
enfocarse en algunos aspectos del comportamiento de la planta (por ej. 
tasa de crecimiento de la planta) e ignorando otros (por ej. defensa quími-
ca de la planta) En este reporte, se revisan estudios mostrando cómo los 
mulches orgánicos pueden afectar directamente la disponibilidad de re-
cursos en el suelo. Se presentan evidencias de la literatura mostrando que 
la influencia de los mulches orgánicos en la disponibilidad de recursos 
para la planta puede también afectar las dinámicas fotosintéticas con 
consecuencias directas en las defensas químicas de la planta. Con la re-
visión de literatura, se presentan un sendero mecanicista que ilustra cómo 
los mulches orgánicos pueden influir en los recursos para la planta en el 
suelo, y cómo pueden afectar la fisiología del árbol y las interacciones 
árbol-insecto en áreas urbanas.


