and graphs explaining how the dollars are allocated. The portion of the budget allotted to urban forestry is comparatively small but we must convince the public that even these funds are wisely and efficiently spent.

Forestry Department
City of Ann Arbor
Ann Arbor, Michigan

NEW APPROACH TO INSECT CONTROL

by David G. Nielsen

Pesticides have come under increasing attack as environmental pollutants during the 1970's. Concern for potentially harmful long-range side effects from certain insecticide usage led to a surge in State and Federal support for research programs designed to discover and develop alternative methods of insect control. Loss and threat of loss of residual insecticides through legislation, and poor performance of these materials against some economically important insects, necessitated evaluation of other classes of insecticides and new approaches to insect control.

One major area of research is with sex pheromones, naturally-occurring chemicals which insects release to attract mates. A number of borers of woody ornamentals rely on such pheromones to facilitate mate location. These insects, which construct galleries in living tissues of woody plants, are the most destructive pests of woody ornamentals for which we do not have adequate control recommendations.

A research program was initiated at the OARDC in 1971 to improve borer control practices. A peculiar group of borers that mimic wasps, the clearwing moths, was chosen for this study because: (1) several of its members are serious pests of nursery and landscape plants (they are also pests of cucurbits and grapes); (2) adequate populations were available for study; and (3) they are day fliers, facilitating observation of behavioral patterns.

The first species studied was the lilac borer, *Podosesia syringae* (Harris), which was reported to fly during June in Ohio. During 1971-72, it was confirmed that this insect does emerge from lilac and ash in spring but that it or a very similar moth also emerges from ash in late summer (late August through September).

In 1971, we discovered that virgin female lilac borers emit a sex attractant when they are ready to mate. The chemical or chemicals emitted attracts males of its own kind (species) and males in at least three other genera of the clearwing moth family. Subsequently we have discovered that many clearwing moths respond to the same or similar sex attractants. Discovery of this phenomenon, sometimes called cross-attraction, means that a control method utilizing a sex attractant for one clearwing moth might be adaptable for controlling several other economically important borers.

Cooperative studies with the United States Department of Agriculture Insect Attractants, Behavior, and Basic Biology Research Laboratory located at Gainesville, Florida, have revealed that a sex pheromone isolated from peachtree borer, *Sanninoidea exitiosa* (Grote and Robinson), is attractive to lilac borer; dogwood borer, *Synanthe- don scitula* (Harris); an oak borer, *Paranthrene simulans* Lugger; and other clearwing moths. This attractant and related synthetic sex pheromones are currently being produced commercially in Ohio for use in research programs throughout the United States and abroad.

While one isomer (chemical form) of the synthetic sex pheromone is the best attractant for a particular species, another isomer, or a combination of two or more isomers, may be best for attracting another moth. We are currently investigating formulation of different isomers and combinations of isomers to determine the best combinations for borers that attack woody plants. We are also evaluating trap design, since we know

---

1 Reprinted from *New Horizons*, 1975 (Horticultural Research Institute, Washington, D.C.)
that different moths have different flight habits
and premating behavioral patterns.

The goal of this pheromone research is to de-
velop an inexpensive trap containing synthetic
sex attractant that can be purchased by pro-
ducers, consumers, and pest control operators to
trap male moths. If enough males can be cap-
tured before they mate, reproduction will be cur-
tailed, and the infestation will be reduced. At the
very least, it is hoped that pheromone traps can
be employed to catch males, thereby signaling
the time when insecticidal sprays should be ap-
plied to most effectively reduce the borer popu-
lation. This technique is now being implemented
in tree-fruit orchards to improve insect control
while reducing the number of sprays and amount
of insecticide needed to produce quality fruit.

During the course of these pheromone studies
we have also accumulated insecticide evaluation
data to support a label for Dursban 2E for control
of lilac and ash borer. This usage has been ap-
proved by the Environmental Protection Agency
(EPA) and awaits implementation by the insecti-
cide industry. This insecticide has proven safe
and effective against turf pests and should be a
valuable new tool for controlling clearwing moth
borers. When it is labeled and pheromone traps
are available to time its application lilac and ash
borers should no longer be serious problems in
nurseries or the landscape.

Another potential application for pheromone is
to permeate the mating atmosphere (tree canopy
and surrounding air space) with pheromone so
males are unable to locate a point source of at-
tractant (i.e. the calling female). Other re-
searchers working with agricultural and forest in-
sect pests are trying to perfect this technique.

Department of Entomology
Ohio Agricultural Research and
Development Center
Wooster, Ohio

TRANSPLANTING LARGE TREES

by E. Ed Irish

In Michigan it has become difficult to move
large trees due to road restrictions and permit re-
quirements. The present restrictions allow 13½
feet high, 12½ feet spread, and 65 feet long. We
do not haul these trees on our own mover on the
road due to weight restrictions per axle and tires,
so we load the mover and tree onto a lowboy.

This lowboy has a detachable gooseneck and
with a few planks used to build a slight ramp, we
can pull the tree mover up onto the trailer. The
tree is pulled on top first so the branches over-
hand the rear of the trailer. Once the tree mover
is on the trailer far enough to permit reattaching
the gooseneck, the mover is secured with chains
to the trailer. The plant ramp is piled on the trailer
and the gooseneck is reattached. When the red
flags are tied on the sides and ends of the tree,
and the tractor hooked to the trailer, the tree is
ready for the road.

---